网创优客建站品牌官网
为成都网站建设公司企业提供高品质网站建设
热线:028-86922220
成都专业网站建设公司

定制建站费用3500元

符合中小企业对网站设计、功能常规化式的企业展示型网站建设

成都品牌网站建设

品牌网站建设费用6000元

本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...

成都商城网站建设

商城网站建设费用8000元

商城网站建设因基本功能的需求不同费用上面也有很大的差别...

成都微信网站建设

手机微信网站建站3000元

手机微信网站开发、微信官网、微信商城网站...

建站知识

当前位置:首页 > 建站知识

Pytorch:自定义网络层实例-创新互联

自定义Autograd函数

成都创新互联公司成立于2013年,是专业互联网技术服务公司,拥有项目成都网站建设、成都网站制作网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元卫东做网站,已为上家服务,为卫东各地企业和个人服务,联系电话:13518219792

对于浅层的网络,我们可以手动的书写前向传播和反向传播过程。但是当网络变得很大时,特别是在做深度学习时,网络结构变得复杂。前向传播和反向传播也随之变得复杂,手动书写这两个过程就会存在很大的困难。幸运地是在pytorch中存在了自动微分的包,可以用来解决该问题。在使用自动求导的时候,网络的前向传播会定义一个计算图(computational graph),图中的节点是张量(tensor),两个节点之间的边对应了两个张量之间变换关系的函数。有了计算图的存在,张量的梯度计算也变得容易了些。例如, x是一个张量,其属性 x.requires_grad = True,那么 x.grad就是一个保存这个张量x的梯度的一些标量值。

最基础的自动求导操作在底层就是作用在两个张量上。前向传播函数是从输入张量到输出张量的计算过程;反向传播是输入输出张量的梯度(一些标量)并输出输入张量的梯度(一些标量)。在pytorch中我们可以很容易地定义自己的自动求导操作,通过继承torch.autograd.Function并定义forward和backward函数。

forward(): 前向传播操作。可以输入任意多的参数,任意的python对象都可以。

backward():反向传播(梯度公式)。输出的梯度个数需要与所使用的张量个数保持一致,且返回的顺序也要对应起来。

# Inherit from Function
class LinearFunction(Function):

  # Note that both forward and backward are @staticmethods
  @staticmethod
  # bias is an optional argument
  def forward(ctx, input, weight, bias=None):
    # ctx在这里类似self,ctx的属性可以在backward中调用
    ctx.save_for_backward(input, weight, bias)
    output = input.mm(weight.t())
    if bias is not None:
      output += bias.unsqueeze(0).expand_as(output)
    return output

  # This function has only a single output, so it gets only one gradient
  @staticmethod
  def backward(ctx, grad_output):
    # This is a pattern that is very convenient - at the top of backward
    # unpack saved_tensors and initialize all gradients w.r.t. inputs to
    # None. Thanks to the fact that additional trailing Nones are
    # ignored, the return statement is simple even when the function has
    # optional inputs.
    input, weight, bias = ctx.saved_tensors
    grad_input = grad_weight = grad_bias = None

    # These needs_input_grad checks are optional and there only to
    # improve efficiency. If you want to make your code simpler, you can
    # skip them. Returning gradients for inputs that don't require it is
    # not an error.
    if ctx.needs_input_grad[0]:
      grad_input = grad_output.mm(weight)
    if ctx.needs_input_grad[1]:
      grad_weight = grad_output.t().mm(input)
    if bias is not None and ctx.needs_input_grad[2]:
      grad_bias = grad_output.sum(0).squeeze(0)

    return grad_input, grad_weight, grad_bias

#调用自定义的自动求导函数
linear = LinearFunction.apply(*args) #前向传播
linear.backward()#反向传播
linear.grad_fn.apply(*args)#反向传播

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


本文标题:Pytorch:自定义网络层实例-创新互联
转载源于:http://bjjierui.cn/article/cdsocc.html

其他资讯