网创优客建站品牌官网
为成都网站建设公司企业提供高品质网站建设
热线:028-86922220
成都专业网站建设公司

定制建站费用3500元

符合中小企业对网站设计、功能常规化式的企业展示型网站建设

成都品牌网站建设

品牌网站建设费用6000元

本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...

成都商城网站建设

商城网站建设费用8000元

商城网站建设因基本功能的需求不同费用上面也有很大的差别...

成都微信网站建设

手机微信网站建站3000元

手机微信网站开发、微信官网、微信商城网站...

建站知识

当前位置:首页 > 建站知识

c语言中ln函数怎么表示 c语言中ln函数怎么表示的

c语言中的log,ln,lg怎么编写

首先在C语言中要用到指数、对数的相关公式,需要引入math.h。另外ln是以e为底数,lg是以10为底数。

成都创新互联公司的客户来自各行各业,为了共同目标,我们在工作上密切配合,从创业型小企业到企事业单位,感谢他们对我们的要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。专业领域包括网站设计制作、网站设计、电商网站开发、微信营销、系统平台开发。

代码如下:

#includestdio.h

#includemath.h

void main()

{

double exponent, base;

exponent = 3.14;

printf("ln(%f) = %.2f\n", exponent, log(exponent));//以e为底数的对数

exponent = 100;

printf("lg(%.f) = %.2f\n", exponent, log10(exponent));//以10为底数的对数

base = 5, exponent = 100;

printf("log_%.f(%.f) = %.2f\n", base, exponent, log(exponent)/log(base));//换底公式

return 0;

}

在求log_5(100)时需要用到“换底公式”:log_5(100) = ln(100)/ln(5)。

扩展资料:

math.h文件中包含的函数主要分为以下几类:

1、三角函数、反三角函数、双曲三角函数。

2、指数、对数。

3、取整、绝对值。

4、标准化浮点数。

涉及参数类型为double类型。

参考资料:

百度百科——换底公式

百度百科——math.h

在C语言中ln/x是啥意思?

在C语言中,ln/x是一个表达式,它表示以e为底的自然对数与x的商,即ln(x)/x。

首先,要知道C语言中用log(x)函数来表示以e为底的自然对数,即ln(x)。

然后,要知道C语言中用/运算符来表示除法运算。

因此,ln/x就是log(x)/x的简写形式。

例如,如果x=2,则ln/x=log(2)/2=0.3466/2=0.1733。

ln在c语言中如何定义

math.h里面就有

double log (double); 以e为底的对数

如果你是想自己写一个函数的话,那得用级数展开,展成多项式

ln(x) = -sum_(k=1)^infinity((-1)^k (-1+x)^k)/k for |-1+x|

C++中,自然对数怎么表达,就是比如b=ln(a),怎么表示?

在C++/C语言中,对数函数y = lnx的表示方法为y = log(x),函数的完整原型为:double log(double x)。

#includecstdio

#includealgorithm

#includecmath

using namespace std;

int main()

{

printf("%f\n",log(10));

return 0;

}  

扩展资料

C语言 log10() 函数用来求以 10 为底的对数值。

头文件:math.h

语法/原型:double log10(double x);

参数 x 是一个双精度数。

返回值:以 10 为底的 x 的对数值。

【实例】使用C语言 log10() 函数求以 10 为底的 40 的对数。

#include stdio.h

#include math.h

int main() {

double m = 40;  //为变量赋初值

double n = log10(m);  //求以10为底的参数40的对数

printf("%lf\n", n);

return 0;

}

运行结果:

1.602060


网页名称:c语言中ln函数怎么表示 c语言中ln函数怎么表示的
网页地址:http://bjjierui.cn/article/dddhice.html

其他资讯