符合中小企业对网站设计、功能常规化式的企业展示型网站建设
本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...
商城网站建设因基本功能的需求不同费用上面也有很大的差别...
手机微信网站开发、微信官网、微信商城网站...
在mysql中使用B+树索引的优势有哪些?很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。
创新互联建站坚持“要么做到,要么别承诺”的工作理念,服务领域包括:成都网站制作、成都网站设计、外贸营销网站建设、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的白河网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!MySQL的存储结构
单位:表>段>区>页>行
在数据库中, 不论读一行,还是读多行,都是将这些行所在的页进行加载。也就是说存储空间的基本单位是页。
一个页就是一棵树B+树的节点,数据库I/O操作的最小单位是页,与数据库相关的内容都会存储在页的结构里。
在一棵B+树中,每个节点为都是一个页,每次新建节点的时候,就会申请一个页空间
同一层的节点为之间,通过页的结构构成了一个双向链表
非叶子节点为,包括了多个索引行,每个索引行里存储索引键和指向下一层页面的指针
叶子节点为,存储了关键字和行记录,在节点内部(也就是页结构的内部)记录之间是一个单向的链表
有以下几个特点
将所有的记录分成几个组, 每组会存储多条记录,
页目录存储的是槽(slot),槽相当于分组记录的索引,每个槽指针指向了不同组的最后一个记录
我们通过槽定位到组,再查看组中的记录
页的主要作用是存储记录,在页中记录以单链表的形式进行存储。
单链表优点是插入、删除方便,缺点是检索效率不高,最坏的情况要遍历链表所有的节点。因此页目录中提供了二分查找的方式,来提高记录的检索效率。
我们再来看下B+树的检索过程
从B+树的根开始,逐层找到叶子节点。
找到叶子节点为对应的数据页,将数据叶加载到内存中,通过页目录的槽采用二分查找的方式先找到一个粗略的记录分组。
在分组中通过链表遍历的方式进行记录的查找。
数据库访问数据要通过页,一个页就是一个B+树节点,访问一个节点相当于一次I/O操作,所以越快能找到节点,查找性能越好。
B+树的特点就是够矮够胖,能有效地减少访问节点次数从而提高性能。
下面,我们来对比一个二叉树、多叉树、B树和B+树。
二叉树是一种二分查找树,有很好的查找性能,相当于二分查找。
但是当N比较大的时候,树的深度比较高。数据查询的时间主要依赖于磁盘IO的次数,二叉树深度越大,查找的次数越多,性能越差。
最坏的情况是退化成了链表,如下图
为了让二叉树不至于退化成链表,人们发明了AVL树(平衡二叉搜索树):任何结点的左子树和右子树高度最多相差1
多叉树就是节点可以是M个,能有效地减少高度,高度变小后,节点变少I/O自然少,性能比二叉树好了
B树简单地说就是多叉树,每个叶子会存储数据,和指向下一个节点的指针。
例如要查找9,步骤如下
我们与根节点的关键字 (17,35)进行比较,9 小于 17 那么得到指针 P1;
按照指针 P1 找到磁盘块 2,关键字为(8,12),因为 9 在 8 和 12 之间,所以我们得到指针 P2;
按照指针 P2 找到磁盘块 6,关键字为(9,10),然后我们找到了关键字 9。
B+树是B树的改进,简单地说是:只有叶子节点才存数据,非叶子节点是存储的指针;所有叶子节点构成一个有序链表
B+树的内部节点并没有指向关键字具体信息的指针,因此其内部节点相对B树更小,如果把所有同一内部节点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多,一次性读入内存的需要查找的关键字也就越多,相对IO读写次数就降低了
例如要查找关键字16,步骤如下
与根节点的关键字 (1,18,35) 进行比较,16 在 1 和 18 之间,得到指针 P1(指向磁盘块 2)
找到磁盘块 2,关键字为(1,8,14),因为 16 大于 14,所以得到指针 P3(指向磁盘块 7)
找到磁盘块 7,关键字为(14,16,17),然后我们找到了关键字 16,所以可以找到关键字 16 所对应的数据。
B+树与B树的不同:
B+树非叶子节点不存在数据只存索引,B树非叶子节点存储数据
B+树查询效率更高。B+树使用双向链表串连所有叶子节点,区间查询效率更高(因为所有数据都在B+树的叶子节点,扫描数据库 只需扫一遍叶子结点就行了),但是B树则需要通过中序遍历才能完成查询范围的查找。
B+树查询效率更稳定。B+树每次都必须查询到叶子节点才能找到数据,而B树查询的数据可能不在叶子节点,也可能在,这样就会造成查询的效率的不稳定
B+树的磁盘读写代价更小。B+树的内部节点并没有指向关键字具体信息的指针,因此其内部节点相对B树更小,通常B+树矮更胖,高度小查询产生的I/O更少。
看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注创新互联行业资讯频道,感谢您对创新互联网站建设公司,的支持。