符合中小企业对网站设计、功能常规化式的企业展示型网站建设
本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...
商城网站建设因基本功能的需求不同费用上面也有很大的差别...
手机微信网站开发、微信官网、微信商城网站...
Merge函数用法Python
成都创新互联公司是一家专注于做网站、成都网站制作与策划设计,获嘉网站建设哪家好?成都创新互联公司做网站,专注于网站建设十载,网设计领域的专业建站公司;建站业务涵盖:获嘉等地区。获嘉做网站价格咨询:13518219792
Merge函数是Python中非常常用的函数之一,它可以将两个或多个数据框按照一定的条件合并成一个新的数据框。在数据分析和处理中,经常需要将不同数据源的数据进行整合,此时就可以使用merge函数来完成。
Merge函数的基本用法如下:
`python
pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,
left_index=False, right_index=False, sort=True, suffixes=('_x', '_y'),
copy=True, indicator=False, validate=None)
其中,left和right表示需要合并的两个数据框,how表示合并方式,on表示合并的列名,left_on和right_on表示左右数据框需要合并的列名,left_index和right_index表示是否以索引作为合并列,sort表示是否对合并后的数据框进行排序,suffixes表示重名列的后缀,copy表示是否复制数据框,indicator表示是否在合并后的数据框中添加一列指示合并方式,validate表示检查合并的数据框是否合法。
Merge函数的常用合并方式包括:
- inner:内连接,只保留两个数据框中都存在的行;
- outer:外连接,保留两个数据框中所有的行,缺失值用NaN填充;
- left:左连接,保留左侧数据框的所有行,右侧数据框中没有的行用NaN填充;
- right:右连接,保留右侧数据框的所有行,左侧数据框中没有的行用NaN填充。
Merge函数的应用场景非常广泛,比如:
- 将两个表格按照某一列合并;
- 将两个表格按照多列合并;
- 将两个表格按照索引合并;
- 将两个表格按照不同的列名合并。
下面我们来看几个具体的例子。
案例一:按照一列合并
假设我们有两个数据框df1和df2,需要按照列名为key的列来合并,代码如下:
`python
import pandas as pd
df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'], 'value': [1, 2, 3, 4]})
df2 = pd.DataFrame({'key': ['B', 'D', 'E', 'F'], 'value': [5, 6, 7, 8]})
result = pd.merge(df1, df2, on='key')
print(result)
输出结果为:
key value_x value_y
0 B 2 5
1 D 4 6
可以看到,合并后的结果只包含df1和df2中key列相同的行。
案例二:按照多列合并
假设我们有两个数据框df1和df2,需要按照列名为key1和key2的列来合并,代码如下:
`python
import pandas as pd
df1 = pd.DataFrame({'key1': ['A', 'B', 'C', 'D'], 'key2': ['X', 'Y', 'Z', 'W'], 'value': [1, 2, 3, 4]})
df2 = pd.DataFrame({'key1': ['B', 'D', 'E', 'F'], 'key2': ['Y', 'W', 'X', 'Z'], 'value': [5, 6, 7, 8]})
result = pd.merge(df1, df2, on=['key1', 'key2'])
print(result)
输出结果为:
key1 key2 value_x value_y
0 D W 4 6
可以看到,合并后的结果只包含df1和df2中key1和key2列都相同的行。
案例三:按照索引合并
假设我们有两个数据框df1和df2,需要按照它们的索引来合并,代码如下:
`python
import pandas as pd
df1 = pd.DataFrame({'value': [1, 2, 3, 4]}, index=['A', 'B', 'C', 'D'])
df2 = pd.DataFrame({'value': [5, 6, 7, 8]}, index=['B', 'D', 'E', 'F'])
result = pd.merge(df1, df2, left_index=True, right_index=True)
print(result)
输出结果为:
value_x value_y
B 2 5
D 4 6
可以看到,合并后的结果只包含df1和df2中索引相同的行。
案例四:按照不同的列名合并
假设我们有两个数据框df1和df2,需要按照df1中的列名为key1,df2中的列名为key2来合并,代码如下:
`python
import pandas as pd
df1 = pd.DataFrame({'key1': ['A', 'B', 'C', 'D'], 'value': [1, 2, 3, 4]})
df2 = pd.DataFrame({'key2': ['B', 'D', 'E', 'F'], 'value': [5, 6, 7, 8]})
result = pd.merge(df1, df2, left_on='key1', right_on='key2')
print(result)
输出结果为:
key1 value_x key2 value_y
0 B 2 B 5
1 D 4 D 6
可以看到,合并后的结果包含df1和df2中key1和key2列相同的行,并且将它们合并在一起。
问答
1.什么是merge函数?
Merge函数是Python中非常常用的函数之一,它可以将两个或多个数据框按照一定的条件合并成一个新的数据框。
2.merge函数的常用合并方式有哪些?
Merge函数的常用合并方式包括:inner、outer、left和right。
3.merge函数的应用场景有哪些?
Merge函数的应用场景非常广泛,比如将两个表格按照某一列合并、将两个表格按照多列合并、将两个表格按照索引合并、将两个表格按照不同的列名合并等。
4.如何按照一列合并数据框?
可以使用merge函数的on参数来指定需要合并的列名。
5.如何按照多列合并数据框?
可以使用merge函数的on参数来指定需要合并的列名列表。
6.如何按照索引合并数据框?
可以使用merge函数的left_index和right_index参数来指定是否以索引作为合并列。
7.如何按照不同的列名合并数据框?
可以使用merge函数的left_on和right_on参数来指定左右数据框需要合并的列名。