网创优客建站品牌官网
为成都网站建设公司企业提供高品质网站建设
热线:028-86922220
成都专业网站建设公司

定制建站费用3500元

符合中小企业对网站设计、功能常规化式的企业展示型网站建设

成都品牌网站建设

品牌网站建设费用6000元

本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...

成都商城网站建设

商城网站建设费用8000元

商城网站建设因基本功能的需求不同费用上面也有很大的差别...

成都微信网站建设

手机微信网站建站3000元

手机微信网站开发、微信官网、微信商城网站...

建站知识

当前位置:首页 > 建站知识

R语言出现矩阵/缺失值怎么办-创新互联

这篇文章将为大家详细讲解有关R语言出现矩阵/缺失值怎么办,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

我们提供的服务有:网站设计制作、做网站、微信公众号开发、网站优化、网站认证、安徽ssl等。为1000+企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的安徽网站制作公司

缺失值处理一般包括三步:

1. 识别缺失数据;

2. 检查导致数据缺失的原因;

3. 删除包含缺失值的实例或用合理的数值代替(插补)缺失值。

1.判断缺失值

函数is.na()、is.nan()和is.infinite()可分别用来识别缺失值、不可能值和无穷值。每个返回结果都是

TRUE或FALSE

na表示缺失值

nan表示NOT A NUMBER

infinite表示+-Inf

一定要亲手试x = 0/0,以及x = 1/0

>x <- NA
> is.na(x)
[1] TRUE
> is.nan(x)
[1] FALSE
> is.infinite(x)
 [1] FALSE

函数complete.cases()可用来识别矩阵或数据框中没有缺失值的行

超级好用

#加载数据集
>data(sleep,package = "VIM")
#没有缺失值的行
>sleep[complete.cases(sleep),]
#列出有一个或多个缺失值的行
>sleep[!complete.cases(sleep),]

2.图形探究缺失数

#自己生成图形
>library("VIM")
>aggr(sleep,prop = FALSE,numbers = TRUE)

matrixplot()函数可生成展示每个实例数据的图形

#自己生成图形
marginplot(sleep[c("Gest","Dream")],phc=c(20),col=c("darkgray","red","blue"))

3.删除缺失值

函数complete.cases()可以用来存储没有缺失值的数据框或者矩阵形式的实例(行):

#可以把mydata替换成sleep,延续上面的代码
>newdata <- mydata[complete.cases(mydata),]

同样的结果可以用na.omit函数获得:

#可以把mydata替换成sleep,延续上面的代码
>newdata <- na.omit(mydata)

两行代码表示的意思都是:mydata中所有包含缺失数据的行都被删除,然后结果才存储到newdata中,以后拟合就用新数据newdata.

处理含缺失值的数据集时,成对删除常作为行删除的备选方法使用。对于成对删除,观测只是当它含缺失数据的变量涉及某个特定分析时才会被删除:

>cor(sleep,use = "pairwise.complete.obs")

3.1补全缺失值

R语言出现矩阵/缺失值怎么办

函数mice()首先从一个包含缺失数据的数据框开始,然后返回一个包含多个(默认为5个)完整数据集的对象。

每个完整数据集都是通过对原始数据框中的缺失数据进行插补而生成的。

由于插补有随机的成分,因此每个完整数据集都略有不同。

然后,with()函数可依次对每个完整数据集应用统计模型(如线性模型或广义线性模型),最 后 ,pool()函数将这些单独的分析结果整合为一组结果。

最终模型的标准误和p值都将准确地反映出由于缺失值和多重插补而产生的不确定性。

>library(mice)
>data("sleep",package = "VIM")
>imp <- mice(sleep,seed = 1234)
#imp <- mice(sleep)
>fit <- with(imp,lm(Dream~Span+Gest))
fit
>pooled <- pool(fit)
>summary(pooled)
imp
>dataset2 <- complete(imp,action = 2)
>cor(sleep,use = "pairwise.complete.obs")

dataset2 is the newData

下图为完整缺失值处理图片:

R语言出现矩阵/缺失值怎么办

补充:R语言读取数据空值

一、Txt文件

1. 文件中的内容有双引号,空值的时候是一对双引号

filename.txt 文件内容形如:

"ID" "ITEM"

"1080254842" "汉字"

"1080254842" "中文"

"1080594798" ""

"1080594798" ""

导入数据:

test <-read.table("filename.txt",header=TRUE)

空值部分并不是NA,R语言不会把他识别为NA,改为下面的语句,即可解决。

test <-read.table("filename.txt",header=TRUE,na.strings = "")

2. 文件中内容无双引号,空值即直接空白,形如下面:

ID ITEM

1080254842 汉字

1080254842 中文

1080594798

1080594798

导入数据:

test <-read.table("filename.txt",header=TRUE)

会出现错误:Error in scan(file, what, nmax, sep, dec, quote, skip, nlines, na.strings, :3行没有2元素

第三行第二元素没有。

修改为如下即可:

test <-read.table("filename.txt",header=TRUE,fill=TRUE)

导入数据成功,但是,空值仍然不是NA,还需加上na.strings = "",

test <-read.table("filename.txt",header=TRUE, fill=TRUE, na.strings = "")

成功导入。

二、csv文件

test <-read.csv("test.csv",header=TRUE,sep=",",na.strings = "")

其中:

header =TRUE,表示把第一行作为标题。

sep=",",因为csv文件的列是用逗号分开的,加上sep=",",帮助R通过识别逗号来分割列。如果没加,会出现原本多列数据导入后变为一列的情况。

na.strings = "":处理缺失值问题。

关于“R语言出现矩阵/缺失值怎么办”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。


名称栏目:R语言出现矩阵/缺失值怎么办-创新互联
本文网址:http://bjjierui.cn/article/diesps.html

其他资讯