符合中小企业对网站设计、功能常规化式的企业展示型网站建设
本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...
商城网站建设因基本功能的需求不同费用上面也有很大的差别...
手机微信网站开发、微信官网、微信商城网站...
这篇文章主要介绍了从TensorFlow中mnist数据集导出手写体数字图片的案例,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。
专注于为中小企业提供成都做网站、成都网站制作服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业金林免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了上1000+企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。mnist数据集是一个数字手写体图片库,但它的存储格式并非常见的图片格式,所有的图片都集中保存在四个扩展名为idx3-ubyte的二进制文件。
如果我们想要知道大名鼎鼎的mnist手写体数字都长什么样子,就需要从mnist数据集中导出手写体数字图片。了解这些手写体的总体形状,也有助于加深我们对TensorFlow入门课程的理解。
下面先给出通过TensorFlow api接口导出mnist手写体数字图片的python代码,再对代码进行分析。代码在win7下测试通过,linux环境也可以参考本处代码。
#!/usr/bin/python3.5 # -*- coding: utf-8 -*- import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from PIL import Image # 声明图片宽高 rows = 28 cols = 28 # 要提取的图片数量 images_to_extract = 8000 # 当前路径下的保存目录 save_dir = "./mnist_digits_images" # 读入mnist数据 mnist = input_data.read_data_sets("MNIST_data/", one_hot=False) # 创建会话 sess = tf.Session() # 获取图片总数 shape = sess.run(tf.shape(mnist.train.images)) images_count = shape[0] pixels_per_image = shape[1] # 获取标签总数 shape = sess.run(tf.shape(mnist.train.labels)) labels_count = shape[0] # mnist.train.labels是一个二维张量,为便于后续生成数字图片目录名,有必要一维化(后来发现只要把数据集的one_hot属性设为False,mnist.train.labels本身就是一维) #labels = sess.run(tf.argmax(mnist.train.labels, 1)) labels = mnist.train.labels # 检查数据集是否符合预期格式 if (images_count == labels_count) and (shape.size == 1): print ("数据集总共包含 %s 张图片,和 %s 个标签" % (images_count, labels_count)) print ("每张图片包含 %s 个像素" % (pixels_per_image)) print ("数据类型:%s" % (mnist.train.images.dtype)) # mnist图像数据的数值范围是[0,1],需要扩展到[0,255],以便于人眼观看 if mnist.train.images.dtype == "float32": print ("准备将数据类型从[0,1]转为binary[0,255]...") for i in range(0,images_to_extract): for n in range(pixels_per_image): if mnist.train.images[i][n] != 0: mnist.train.images[i][n] = 255 # 由于数据集图片数量庞大,转换可能要花不少时间,有必要打印转换进度 if ((i+1)%50) == 0: print ("图像浮点数值扩展进度:已转换 %s 张,共需转换 %s 张" % (i+1, images_to_extract)) # 创建数字图片的保存目录 for i in range(10): dir = "%s/%s/" % (save_dir,i) if not os.path.exists(dir): print ("目录 ""%s"" 不存在!自动创建该目录..." % dir) os.makedirs(dir) # 通过python图片处理库,生成图片 indices = [0 for x in range(0, 10)] for i in range(0,images_to_extract): img = Image.new("L",(cols,rows)) for m in range(rows): for n in range(cols): img.putpixel((n,m), int(mnist.train.images[i][n+m*cols])) # 根据图片所代表的数字label生成对应的保存路径 digit = labels[i] path = "%s/%s/%s.bmp" % (save_dir, labels[i], indices[digit]) indices[digit] += 1 img.save(path) # 由于数据集图片数量庞大,保存过程可能要花不少时间,有必要打印保存进度 if ((i+1)%50) == 0: print ("图片保存进度:已保存 %s 张,共需保存 %s 张" % (i+1, images_to_extract)) else: print ("图片数量和标签数量不一致!")
上述代码的实现思路如下:
1.读入mnist手写体数据;
2.把数据的值从[0,1]浮点范围转化为黑白格式(背景为0-黑色,前景为255-白色);
3.根据mnist.train.labels的内容,生成数字索引,也就是建立每一张图片和其所代表数字的关联,由此创建对应的保存目录;
4.循环遍历mnist.train.images,把每张图片的像素数据赋值给python图片处理库PIL的Image类实例,再调用Image类的save方法把图片保存在第3步骤中创建的对应目录。
在运行上述代码之前,你需要确保本地已经安装python的图片处理库PIL,pip安装命令如下:
pip3 install Pillow
或 pip install Pillow,取决于你的pip版本。
上述python代码运行后,在当前目录下会生成mnist_digits_images目录,在该目录下,可以看到如下内容:
可以看到,我们成功地生成了黑底白字的数字图片。
如果仔细观察这些图片,会看到一些肉眼也难以分辨的数字,譬如:
上面这几个数字是2。想不到吧?
下面这两个是5(看起来更像6):
这个是7:(7长这样?有句MMP不知当讲不当讲)
猜猜下面这个是什么:
这是大写的L?不是。
有点像1,是1吗?也不是。
倒立拉粑的7?sorry,又猜错了。
实话告诉您,它是2!一开始我也是不相信的,知道真相的那一刻我下巴差点掉下来!
这些手写图片,一般人用肉眼观察,识别率能达到98%就不错了,但是通过TensorFlow搭建的卷积神经网络识别率可以达到99%,非常地神奇!
感谢你能够认真阅读完这篇文章,希望小编分享的“从TensorFlow中mnist数据集导出手写体数字图片的案例”这篇文章对大家有帮助,同时也希望大家多多支持创新互联,关注创新互联行业资讯频道,更多相关知识等着你来学习!