网创优客建站品牌官网
为成都网站建设公司企业提供高品质网站建设
热线:028-86922220
成都专业网站建设公司

定制建站费用3500元

符合中小企业对网站设计、功能常规化式的企业展示型网站建设

成都品牌网站建设

品牌网站建设费用6000元

本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...

成都商城网站建设

商城网站建设费用8000元

商城网站建设因基本功能的需求不同费用上面也有很大的差别...

成都微信网站建设

手机微信网站建站3000元

手机微信网站开发、微信官网、微信商城网站...

建站知识

当前位置:首页 > 建站知识

python爬虫中如何爬取2019中国好声音评论-创新互联

这篇文章主要为大家展示了“python爬虫中如何爬取2019中国好声音评论”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“python爬虫中如何爬取2019中国好声音评论”这篇文章吧。

公司主营业务:成都网站建设、做网站、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。成都创新互联公司是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。成都创新互联公司推出郁南免费做网站回馈大家。

1.网页分析部分

本文爬取的是腾讯视频评论,第六期的评论地址是:http://coral.qq.com/4093121984

每页有10条评论,点击“查看更多评论”,可将新的评论加载进来,通过多次加载,可以发现我们要找的评论就在以v2开头的js类型的响应中。

请求为GET请求,地址是http://coral.qq.com/article/4093121984/comment/v2 ,通过传入不同的参数返回不同的评论内容。

python爬虫中如何爬取2019中国好声音评论

python爬虫中如何爬取2019中国好声音评论

经过对比发现,参数不同的地方只有两点,"cursor"和""。

先看"cursor":第一页的"cursor"是0,后面每一页的都是前一页响应中"last"的值

再看下"":第一页的值似乎是随机生成的,而后面每一页都在前一页的基础上加1

python爬虫中如何爬取2019中国好声音评论

python爬虫中如何爬取2019中国好声音评论

OK,找到规律后,开始爬取每一页的评论

2.爬虫部分

(1)导入需要的库

import requests
import re
import random
import time
import json
import jieba
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib.font_manager as fmgr
from wordcloud import WordCloud
from common import user_agent #自定义
from common import my_fanction #自定义

其中common文件夹中自定义了一些方法:

user_agent

#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''
@File : user_agent.py
@Author: Fengjicheng
@Date : 2019/8/11
@Desc :
'''
user_agent_list = [
    # Opera
    "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36 OPR/26.0.1656.60",
    "Opera/8.0 (Windows NT 5.1; U; en)",
    "Mozilla/5.0 (Windows NT 5.1; U; en; rv:1.8.1) Gecko/20061208 Firefox/2.0.0 Opera 9.50",
    "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; en) Opera 9.50",
    # Firefox
    "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:34.0) Gecko/20100101 Firefox/34.0",
    "Mozilla/5.0 (X11; U; Linux x86_64; zh-CN; rv:1.9.2.10) Gecko/20100922 Ubuntu/10.10 (maverick) Firefox/3.6.10",
    # Safari
    "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/534.57.2 (KHTML, like Gecko) Version/5.1.7 Safari/534.57.2",
    # chrome
    "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.71 Safari/537.36",
    "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11",
    "Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/534.16 (KHTML, like Gecko) Chrome/10.0.648.133 Safari/534.16",
    # 360
    "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/30.0.1599.101 Safari/537.36",
    "Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko",
    # 淘宝浏览器
    "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.11 TaoBrowser/2.0 Safari/536.11",
    # 猎豹浏览器
    "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.71 Safari/537.1 LBBROWSER",
    "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E; LBBROWSER)",
    "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; QQDownload 732; .NET4.0C; .NET4.0E; LBBROWSER)",
    # QQ浏览器
    "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E; QQBrowser/7.0.3698.400)",
    "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; QQDownload 732; .NET4.0C; .NET4.0E)",
    # sogou浏览器
    "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.84 Safari/535.11 SE 2.X MetaSr 1.0",
    "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0; SV1; QQDownload 732; .NET4.0C; .NET4.0E; SE 2.X MetaSr 1.0)",
    # maxthon浏览器
    "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Maxthon/4.4.3.4000 Chrome/30.0.1599.101 Safari/537.36",
    # UC浏览器
    "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.122 UBrowser/4.0.3214.0 Safari/537.36",
  ]

my_function

#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''
@File : file_writte.py
@Author: Fengjicheng
@Date : 2019/8/24
@Desc :
'''
def file_write(file_name,content):
  if content:
    if type(content) == list:
      for i in content:
        with open(file_name,'a',encoding='utf-8') as f:
          f.write(i + '\n')
    if type(content) == str:
      with open(file_name, 'a', encoding='utf-8') as f:
        f.write(content)
  else:
    print(content,"内容为空,跳过")
    pass

(2)爬取评论内容

这里总共爬取了三种类型的数据:用户评论、用户昵称、用户所在地区

#评论请求地址
url = 'http://coral.qq.com/article/4093121984/comment/v2'
agent = random.choice(user_agent.user_agent_list)
header = {
'Host': 'video.coral.qq.com',
'User-Agent': agent,
'Accept': '*/*',
'Accept-Language': 'zh-CN,zh;q=0.8,zh-TW;q=0.7,zh-HK;q=0.5,en-US;q=0.3,en;q=0.2',
'Accept-Encoding': 'gzip, deflate, br',
'Connection': 'keep-alive',
'Referer': 'https://page.coral.qq.com/coralpage/comment/video.html',
'TE': 'Trailers'
}
# 第一页
cursor = '0'
vid = 1566724116229

def get_comment(a,b):
  parameter = {
  'callback': '_varticle4093121984commentv2',
  'orinum': '10',
  'oriorder': 'o',
  'pageflag': '1',
  'cursor': a,
  'scorecursor': '0',
  'orirepnum': '2',
  'reporder': 'o',
  'reppageflag': '1',
  'source': '1',
  '_': str(b)
  }
  try:
    html = requests.get(url,params=parameter,headers=header)
  except Exception as e:
    print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),"请求失败。",e)
  else:
    print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),"请求成功。")
  content = html.content.decode('utf-8')
  sep1 = '"last":"(.*?)"' # 下一个 cursor
  sep2 = '"content":"(.*?)"' # 评论
  sep3 = '"nick":"(.*?)"' # 昵称
  sep4 = '"region":"(.*?)"' # 地区
  global cursor
  cursor = re.compile(sep1).findall(content)[0]
  comment = re.compile(sep2).findall(content)
  nick = re.compile(sep3).findall(content)
  region = re.compile(sep4).findall(content)
  my_fanction.file_write('txt/comment.txt',comment)
  my_fanction.file_write('txt/nick.txt',nick)
  my_fanction.file_write('txt/region.txt',region)

效果如下:

python爬虫中如何爬取2019中国好声音评论

python爬虫中如何爬取2019中国好声音评论

python爬虫中如何爬取2019中国好声音评论

(3)对用户评论进行分词

def cut_word(file_path):
  with open(file_path,'r',encoding='utf-8') as f:
    comment_txt = f.read()
    wordlist = jieba.cut(comment_txt, cut_all=True)
    wl = " ".join(wordlist)
    print(wl)
    return wl #返回分词后的数据

(4)生成词云

#词云形状图片
img1 = 'lib/fangxing.png'
img2 = 'lib/xin.png'
#词云字体
font = 'lib/simsun.ttc'
def create_word_cloud(file_path,img):
  # 设置词云形状图片
  wc_mask = np.array(Image.open(img))
  # 设置词云的一些配置,如:字体,背景色,词云形状,大小
  wc = WordCloud(background_color="white", max_words=200, mask=wc_mask, scale=4,
          max_font_size=50, random_state=42, font_path=font)
  # 生成词云
  wc.generate(cut_word(file_path))
  # 在只设置mask的情况下,你将会得到一个拥有图片形状的词云
  plt.imshow(wc, interpolation="bilinear")
  plt.axis("off")
  #plt.figure()
  plt.show()

效果如下:

python爬虫中如何爬取2019中国好声音评论

python爬虫中如何爬取2019中国好声音评论

(5)对用户地区统计分析

国外地区忽略了,这里只对国内地区进行了分析

def create_region_histogram():
  with open('txt/region.txt','r',encoding='utf-8') as f:
    country_list = f.readlines()
    country_list = [x.strip() for x in country_list if x.strip() != '::']
  sep1 = ':'
  pattern1 = re.compile(sep1)
  province_lit = []
  province_count = []
  other_list = []
  other_count = []
  for country in country_list:
    country_detail = re.split(pattern1,country)
    if '中国' in country_detail:
      if country_detail[1] != '':
        province_lit.append(country_detail[1])
    else:
      other_list.append(country_detail[0])
  province_uniq = list(set(province_lit))
  other_uniq = list(set(other_list))
  for i in province_uniq:
    province_count.append(province_lit.count(i))
  for i in other_uniq:
    other_count.append(other_list.count(i))
  # 构建数据
  x_data = province_uniq
  y_data = province_count
  # 自定义字体属性
  fp = fmgr.FontProperties(fname='lib/simsun.ttc')
  bar_width = 0.7
  # Y轴数据使用range(len(x_data)
  plt.barh(y=range(len(x_data)), width=y_data, label='count',
       color='steelblue', alpha=0.8, height=bar_width)
  # 在柱状图上显示具体数值, ha参数控制水平对齐方式, va控制垂直对齐方式
  for y, x in enumerate(y_data):
    plt.text(x+10, y - bar_width / 2, '%s' % x, ha='center', va='bottom')
  # 为Y轴设置刻度值
  plt.yticks(np.arange(len(x_data)) + bar_width / 2, x_data,fontproperties=fp)
  # 设置标题
  plt.title("各地区参与评论用户量",fontproperties=fp)
  # 为两条坐标轴设置名称
  plt.xlabel("人数",fontproperties=fp)
  plt.ylabel("地区",fontproperties=fp)
  # 显示图例
  plt.legend()
  plt.show()

效果如下:

python爬虫中如何爬取2019中国好声音评论

以上是“python爬虫中如何爬取2019中国好声音评论”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!


当前文章:python爬虫中如何爬取2019中国好声音评论-创新互联
本文地址:http://bjjierui.cn/article/diicjo.html

其他资讯