符合中小企业对网站设计、功能常规化式的企业展示型网站建设
本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...
商城网站建设因基本功能的需求不同费用上面也有很大的差别...
手机微信网站开发、微信官网、微信商城网站...
Go 中的分片数组,实际上有点类似于Java中的ArrayList,是一个可以扩展的数组,但是Go中的切片由比较灵活,它和数组很像,也是基于数组,所以在了解Go切片前我们先了解下数组。
创新互联建站主要从事成都做网站、成都网站制作、网页设计、企业做网站、公司建网站等业务。立足成都服务大田,十年网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:18980820575
数组简单描述就由相同类型元素组成的数据结构, 在创建初期就确定了长度,是不可变的。
但是Go的数组类型又和C与Java的数组类型不一样, NewArray 用于创建一个数组,从源码中可以看出最后返回的是 Array{}的指针,并不是第一个元素的指针,在Go中数组属于值类型,在进行传递时,采取的是值传递,通过拷贝整个数组。Go语言的数组是一种有序的struct。
Go 语言的数组有两种不同的创建方式,一种是显示的初始化,一种是隐式的初始化。
注意一定是使用 [...]T 进行创建,使用三个点的隐式创建,编译器会对数组的大小进行推导,只是Go提供的一种语法糖。
其次,Go中数组的类型,是由数值类型和长度两个一起确定的。[2]int 和 [3]int 不是同一个类型,不能进行传参和比较,把数组理解为类型和长度两个属性的结构体,其实就一目了然了。
Go中的数组属于值类型,通常应该存储于栈中,局部变量依然会根据逃逸分析确定存储栈还是堆中。
编译器对数组函数中做两种不同的优化:
在静态区完成赋值后复制到栈中。
总结起来,在不考虑逃逸分析的情况下,如果数组中元素的个数小于或者等于 4 个,那么所有的变量会直接在栈上初始化,如果数组元素大于 4 个,变量就会在静态存储区初始化然后拷贝到栈上。
由于数组是值类型,那么赋值和函数传参操作都会复制整个数组数据。
不管是赋值或函数传参,地址都不一致,发生了拷贝。如果数组的数据较大,则会消耗掉大量内存。那么为了减少拷贝我们可以主动的传递指针呀。
地址是一样的,不过传指针会有一个弊端,从打印结果可以看到,指针地址都是同一个,万一原数组的指针指向更改了,那么函数里面的指针指向都会跟着更改。
同样的我们将数组转换为切片,通过传递切片,地址是不一样的,数组值相同。
切片是引用传递,所以它们不需要使用额外的内存并且比使用数组更有效率。
所以,切片属于引用类型。
通过这种方式可以将数组转换为切片。
中间不加三个点就是切片,使用这种方式创建切片,实际上是先创建数组,然后再通过第一种方式创建。
使用make创建切片,就不光编译期了,make创建切片会涉及到运行期。1. 切片的大小和容量是否足够小;
切片是否发生了逃逸,最终在堆上初始化。如果切片小的话会先在栈或静态区进行创建。
切片有一个数组的指针,len是指切片的长度, cap指的是切片的容量。
cap是在初始化切片是生成的容量。
发现切片的结构体是数组的地址指针array unsafe.Pointer,而Go中数组的地址代表数组结构体的地址。
slice 中得到一块内存地址,array[0]或者unsafe.Pointer(array[0])。
也可以通过地址构造切片
nil切片:指的unsafe.Pointer 为nil
空切片:
创建的指针不为空,len和cap为空
当一个切片的容量满了,就需要扩容了。怎么扩,策略是什么?
如果原来数组切片的容量已经达到了最大值,再想扩容, Go 默认会先开一片内存区域,把原来的值拷贝过来,然后再执行 append() 操作。这种情况对现数组的地址和原数组地址不相同。
从上面结果我们可以看到,如果用 range 的方式去遍历一个切片,拿到的 Value 其实是切片里面的值拷贝,即浅拷贝。所以每次打印 Value 的地址都不变。
由于 Value 是值拷贝的,并非引用传递,所以直接改 Value 是达不到更改原切片值的目的的,需要通过 slice[index] 获取真实的地址。
Hello,大家好,又见面了!上一遍我们将 channel 相关基础以及使用场景。这一篇,还需要再次进阶理解channel 阻塞问题。以下创建一个chan类型为int,cap 为3。
channel 内部其实是一个环形buf数据结构 ,是一种滑动窗口机制,当make完后,就分配在 Heap 上。
上面,向 chan 发送一条“hello”数据:
如果 G1 发送数据超过指定cap时,会出现什么情况?
看下面实例:
以上会出现什么,chan 缓冲区允许大小为1,如果再往chan仍数据,满了就会被阻塞,那么是如何实现阻塞的呢?当 chan 满时,会进入 gopark,此时 G1 进入一个 waiting 状态,然后会创建一个 sudog 对象,其实就sendq队列,把 200放进去。等 buf 不满的时候,再唤醒放入buf里面。
通过如下源码,你会更加清晰:
上面,从 chan 获取数据:
Go 语言核心思想:“Do not communicate by sharing memory; instead, share memory by communicating.” 你可以看看这本书名叫:Effective Go
如果接收者,接收一个空对象,也会发生什么情况?
代码示例 :
也会报错如下:
上面,从 chan 取出数据,可是没有数据了。此时,它会把 接收者 G2 阻塞掉,也是和G1发送者一样,也会执行 gopark 将状态改为 waiting,不一样的点就是。
正常情况下,接收者G2作为取出数据是去 buf 读取数据的,但现在,buf 为空了,此时,接收者G2会将sudog导出来,因为现在G2已经被阻塞了嘛,会把G2给G,然后将 t := -ch 中变量 t 是在栈上的地址,放进去 elem ,也就是说,只存它的地址指针在sudog里面。
最后, ch - 200 当G1往 chan 添加200这个数据,正常情况是将数据添加到buf里面,然后唤醒 G2 是吧,而现在是将 G1 的添加200数据直接干到刚才G2阻塞的t这里变量里面。
你会认为,这样真的可以吗?想一想,G2 本来就是已经阻塞了,然后我们直接这么干肯定没有什么毛病,而且效率提高了,不需要再次放入buf再取出,这个过程也是需要时间。不然,不得往chan添加数据需要加锁、拷贝、解锁一序列操作,那肯定就慢了,我想Go语言是为了高效及内存使用率的考虑这样设计的。(注意,一般都是在runtime里面完成,不然会出现象安全问题。)
总结 :
chan 类型的特点:chan 如果为空,receiver 接收数据的时候就会阻塞等待,直到 chan 被关闭或者有新的数据到来。有这种个机制,就可以实现 wait/notify 的设计模式。
相关面试题:
通过var声明或者make函数创建的channel变量是一个存储在函数栈帧上的指针,占用8个字节,指向堆上的hchan结构体
源码包中src/runtime/chan.go定义了hchan的数据结构如下:
hchan结构体的主要组成部分有四个:
用来保存goroutine之间传递数据的循环数组:buf
用来记录此循环数组当前发送或接收数据的下标值:sendx和recvx
用于保存向该chan发送和从该chan接收数据被阻塞的goroutine队列: sendq 和 recvq
保证channel写入和读取数据时线程安全的锁:lock
环形数组作为channel 的缓冲区 数组的长度就是定义channnel 时channel 的缓冲大小
在hchan 中包括了读/写 等待队列, waitq是一个双向队列,包括了一个头结点和尾节点。 每个节点是一个sudog结构体变量
channel有2种类型:无缓冲、有缓冲, 在创建时 make(chan type cap) 通过cap 设定缓冲大小
channel有3种模式:写操作模式(单向通道)、读操作模式(单向通道)、读写操作模式(双向通道)
channel有3种状态:未初始化、正常、关闭
如下几种状态会引发panic
channel 是线程安全的,channel的底层实现中,hchan结构体中采用Mutex锁来保证数据读写安全。在对循环数组buf中的数据进行入队和出队操作时,必须先获取互斥锁,才能操作channel数据
Go语言中没有“类”的概念,也不支持“类”的继承等面向对象的概念。Go语言中通过结构体的内嵌再配合接口比面向对象具有更高的扩展性和灵活性。
自定义类型
在Go语言中有一些基本的数据类型,如string、整型、浮点型、布尔等数据类型, Go语言中可以使用type关键字来定义自定义类型。
自定义类型是定义了一个全新的类型。我们可以基于内置的基本类型定义,也可以通过struct定义。例如:
通过Type关键字的定义,MyInt就是一种新的类型,它具有int的特性。
类型别名
类型别名是Go1.9版本添加的新功能。
类型别名规定:TypeAlias只是Type的别名,本质上TypeAlias与Type是同一个类型。就像一个孩子小时候有小名、乳名,上学后用学名,英语老师又会给他起英文名,但这些名字都指的是他本人。
type TypeAlias = Type
我们之前见过的rune和byte就是类型别名,他们的定义如下:
类型定义和类型别名的区别
类型别名与类型定义表面上看只有一个等号的差异,我们通过下面的这段代码来理解它们之间的区别。
结果显示a的类型是main.NewInt,表示main包下定义的NewInt类型。b的类型是int。MyInt类型只会在代码中存在,编译完成时并不会有MyInt类型。
Go语言中的基础数据类型可以表示一些事物的基本属性,但是当我们想表达一个事物的全部或部分属性时,这时候再用单一的基本数据类型明显就无法满足需求了,Go语言提供了一种自定义数据类型,可以封装多个基本数据类型,这种数据类型叫结构体,英文名称struct。 也就是我们可以通过struct来定义自己的类型了。
Go语言中通过struct来实现面向对象。
结构体的定义
使用type和struct关键字来定义结构体,具体代码格式如下:
其中:
举个例子,我们定义一个Person(人)结构体,代码如下:
同样类型的字段也可以写在一行,
这样我们就拥有了一个person的自定义类型,它有name、city、age三个字段,分别表示姓名、城市和年龄。这样我们使用这个person结构体就能够很方便的在程序中表示和存储人信息了。
语言内置的基础数据类型是用来描述一个值的,而结构体是用来描述一组值的。比如一个人有名字、年龄和居住城市等,本质上是一种聚合型的数据类型
结构体实例化
只有当结构体实例化时,才会真正地分配内存。也就是必须实例化后才能使用结构体的字段。
基本实例化
举个例子:
我们通过.来访问结构体的字段(成员变量),例如p1.name和p1.age等。
匿名结构体
在定义一些临时数据结构等场景下还可以使用匿名结构体。
创建指针类型结构体
我们还可以通过使用new关键字对结构体进行实例化,得到的是结构体的地址。 格式如下:
从打印的结果中我们可以看出p2是一个结构体指针。
需要注意的是在Go语言中支持对结构体指针直接使用.来访问结构体的成员。
取结构体的地址实例化
使用对结构体进行取地址操作相当于对该结构体类型进行了一次new实例化操作。
p3.name = "七米"其实在底层是(*p3).name = "七米",这是Go语言帮我们实现的语法糖。
结构体初始化
没有初始化的结构体,其成员变量都是对应其类型的零值。
使用键值对初始化
使用键值对对结构体进行初始化时,键对应结构体的字段,值对应该字段的初始值。
也可以对结构体指针进行键值对初始化,例如:
当某些字段没有初始值的时候,该字段可以不写。此时,没有指定初始值的字段的值就是该字段类型的零值。
使用值的列表初始化
初始化结构体的时候可以简写,也就是初始化的时候不写键,直接写值:
使用这种格式初始化时,需要注意:
结构体内存布局
结构体占用一块连续的内存。
输出:
【进阶知识点】关于Go语言中的内存对齐推荐阅读:在 Go 中恰到好处的内存对齐
面试题
请问下面代码的执行结果是什么?
构造函数
Go语言的结构体没有构造函数,我们可以自己实现。 例如,下方的代码就实现了一个person的构造函数。 因为struct是值类型,如果结构体比较复杂的话,值拷贝性能开销会比较大,所以该构造函数返回的是结构体指针类型。
调用构造函数
方法和接收者
Go语言中的方法(Method)是一种作用于特定类型变量的函数。这种特定类型变量叫做接收者(Receiver)。接收者的概念就类似于其他语言中的this或者 self。
方法的定义格式如下:
其中,
举个例子:
方法与函数的区别是,函数不属于任何类型,方法属于特定的类型。
指针类型的接收者
指针类型的接收者由一个结构体的指针组成,由于指针的特性,调用方法时修改接收者指针的任意成员变量,在方法结束后,修改都是有效的。这种方式就十分接近于其他语言中面向对象中的this或者self。 例如我们为Person添加一个SetAge方法,来修改实例变量的年龄。
调用该方法:
值类型的接收者
当方法作用于值类型接收者时,Go语言会在代码运行时将接收者的值复制一份。在值类型接收者的方法中可以获取接收者的成员值,但修改操作只是针对副本,无法修改接收者变量本身。
什么时候应该使用指针类型接收者
任意类型添加方法
在Go语言中,接收者的类型可以是任何类型,不仅仅是结构体,任何类型都可以拥有方法。 举个例子,我们基于内置的int类型使用type关键字可以定义新的自定义类型,然后为我们的自定义类型添加方法。
注意事项: 非本地类型不能定义方法,也就是说我们不能给别的包的类型定义方法。
结构体的匿名字段
匿名字段默认采用类型名作为字段名,结构体要求字段名称必须唯一,因此一个结构体中同种类型的匿名字段只能有一个。
嵌套结构体
一个结构体中可以嵌套包含另一个结构体或结构体指针。
嵌套匿名结构体
当访问结构体成员时会先在结构体中查找该字段,找不到再去匿名结构体中查找。
嵌套结构体的字段名冲突
嵌套结构体内部可能存在相同的字段名。这个时候为了避免歧义需要指定具体的内嵌结构体的字段。
结构体的“继承”
Go语言中使用结构体也可以实现其他编程语言中面向对象的继承。
结构体字段的可见性
结构体中字段大写开头表示可公开访问,小写表示私有(仅在定义当前结构体的包中可访问)。
结构体与JSON序列化
JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式。易于人阅读和编写。同时也易于机器解析和生成。JSON键值对是用来保存JS对象的一种方式,键/值对组合中的键名写在前面并用双引号""包裹,使用冒号:分隔,然后紧接着值;多个键值之间使用英文,分隔。
结构体标签(Tag)
Tag是结构体的元信息,可以在运行的时候通过反射的机制读取出来。 Tag在结构体字段的后方定义,由一对反引号包裹起来,具体的格式如下:
`key1:"value1" key2:"value2"`
结构体标签由一个或多个键值对组成。键与值使用冒号分隔,值用双引号括起来。键值对之间使用一个空格分隔。 注意事项: 为结构体编写Tag时,必须严格遵守键值对的规则。结构体标签的解析代码的容错能力很差,一旦格式写错,编译和运行时都不会提示任何错误,通过反射也无法正确取值。例如不要在key和value之间添加空格。
例如我们为Student结构体的每个字段定义json序列化时使用的Tag:
Go 语言较之 C 语言一个很大的优势就是自带 GC 功能,可 GC 并不是没有代价的。写 C 语言的时候,在一个函数内声明的变量,在函数退出后会自动释放掉,因为这些变量分配在栈上。如果你期望变量的数据可以在函数退出后仍然能被访问,就需要调用 malloc 方法在堆上申请内存,如果程序不再需要这块内存了,再调用 free 方法释放掉。Go 语言不需要你主动调用 malloc 来分配堆空间,编译器会自动分析,找出需要 malloc 的变量,使用堆内存。编译器的这个分析过程就叫做逃逸分析。
所以你在一个函数中通过 dict := make(map[string]int) 创建一个 map 变量,其背后的数据是放在栈空间上还是堆空间上,是不一定的。这要看编译器分析的结果。
可逃逸分析并不是百分百准确的,它有缺陷。有的时候你会发现有些变量其实在栈空间上分配完全没问题的,但编译后程序还是把这些数据放在了堆上。如果你了解 Go 语言编译器逃逸分析的机制,在写代码的时候就可以有意识地绕开这些缺陷,使你的程序更高效。
Go 语言虽然在内存管理方面降低了编程门槛,即使你不了解堆栈也能正常开发,但如果你要在性能上较真的话,还是要掌握这些基础知识。
这里不对堆内存和栈内存的区别做太多阐述。简单来说就是, 栈分配廉价,堆分配昂贵。 栈空间会随着一个函数的结束自动释放,堆空间需要时间 GC 模块不断地跟踪扫描回收。如果对这两个概念有些迷糊,建议阅读下面 2 个文章:
这里举一个小例子,来对比下堆栈的差别:
stack 函数中的变量 i 在函数退出会自动释放;而 heap 函数返回的是对变量 i 的引用,也就是说 heap() 退出后,表示变量 i 还要能被访问,它会自动被分配到堆空间上。
他们编译出来的代码如下:
逻辑的复杂度不言而喻,从上面的汇编中可看到, heap() 函数调用了 runtime.newobject() 方法,它会调用 mallocgc 方法从 mcache 上申请内存,申请的内部逻辑前面文章已经讲述过。堆内存分配不仅分配上逻辑比栈空间分配复杂,它最致命的是会带来很大的管理成本,Go 语言要消耗很多的计算资源对其进行标记回收(也就是 GC 成本)。
Go 编辑器会自动帮我们找出需要进行动态分配的变量,它是在编译时追踪一个变量的生命周期,如果能确认一个数据只在函数空间内访问,不会被外部使用,则使用栈空间,否则就要使用堆空间。
我们在 go build 编译代码时,可使用 -gcflags '-m' 参数来查看逃逸分析日志。
以上面的两个函数为例,编译的日志输出是:
日志中的 i escapes to heap 表示该变量数据逃逸到了堆上。
需要使用堆空间,所以逃逸,这没什么可争议的。但编译器有时会将 不需要 使用堆空间的变量,也逃逸掉。这里是容易出现性能问题的大坑。网上有很多相关文章,列举了一些导致逃逸情况,其实总结起来就一句话:
多级间接赋值容易导致逃逸 。
这里的多级间接指的是,对某个引用类对象中的引用类成员进行赋值。Go 语言中的引用类数据类型有 func , interface , slice , map , chan , *Type(指针) 。
记住公式 Data.Field = Value ,如果 Data , Field 都是引用类的数据类型,则会导致 Value 逃逸。这里的等号 = 不单单只赋值,也表示参数传递。
根据公式,我们假设一个变量 data 是以下几种类型,相应的可以得出结论:
下面给出一些实际的例子:
如果变量值是一个函数,函数的参数又是引用类型,则传递给它的参数都会逃逸。
上例中 te 的类型是 func(*int) ,属于引用类型,参数 *int 也是引用类型,则调用 te(j) 形成了为 te 的参数(成员) *int 赋值的现象,即 te.i = j 会导致逃逸。代码中其他几种调用都没有形成 多级间接赋值 情况。
同理,如果函数的参数类型是 slice , map 或 interface{} 都会导致参数逃逸。
匿名函数的调用也是一样的,它本质上也是一个函数变量。有兴趣的可以自己测试一下。
只要使用了 Interface 类型(不是 interafce{} ),那么赋值给它的变量一定会逃逸。因为 interfaceVariable.Method() 先是间接的定位到它的实际值,再调用实际值的同名方法,执行时实际值作为参数传递给方法。相当于 interfaceVariable.Method.this = realValue
向 channel 中发送数据,本质上就是为 channel 内部的成员赋值,就像给一个 slice 中的某一项赋值一样。所以 chan *Type , chan map[Type]Type , chan []Type , chan interface{} 类型都会导致发送到 channel 中的数据逃逸。
这本来也是情理之中的,发送给 channel 的数据是要与其他函数分享的,为了保证发送过去的指针依然可用,只能使用堆分配。
可变参数如 func(arg ...string) 实际与 func(arg []string) 是一样的,会增加一层访问路径。这也是 fmt.Sprintf 总是会使参数逃逸的原因。
例子非常多,这里不能一一列举,我们只需要记住分析方法就好,即,2 级或更多级的访问赋值会 容易 导致数据逃逸。这里加上 容易 二字是因为随着语言的发展,相信这些问题会被慢慢解决,但现阶段,这个可以作为我们分析逃逸现象的依据。
下面代码中包含 2 种很常规的写法,但他们却有着很大的性能差距,建议自己想下为什么。
Benchmark 和 pprof 给出的结果:
熟悉堆栈概念可以让我们更容易看透 Go 程序的性能问题,并进行优化。
多级间接赋值会导致 Go 编译器出现不必要的逃逸,在一些情况下可能我们只需要修改一下数据结构就会使性能有大幅提升。这也是很多人不推荐在 Go 中使用指针的原因,因为它会增加一级访问路径,而 map , slice , interface{} 等类型是不可避免要用到的,为了减少不必要的逃逸,只能拿指针开刀了。
大多数情况下,性能优化都会为程序带来一定的复杂度。建议实际项目中还是怎么方便怎么写,功能完成后通过性能分析找到瓶颈所在,再对局部进行优化。
今天给大家推荐是由Social Explorer团队开源的gods框架,自称"上帝",听这个名字就很霸气,正确的解释是GoDS(Go Data Structures),是数据结构与算法相关的框架。
全能战士,该框架覆盖了数据结构与算法里,大部分容器、集合类的实现, 比golang 的标准开发包提供更丰富的数据结构。
在Go中实现各种数据结构和算法。
吸取了其他算法库数十年的知识和经验。
通过针对给定的一组问题使用最佳算法和数据结构来避免消耗内存,例如, 在TreeMap的情况下,红黑树避免在内存中保留冗余排序的键数组。
结构良好的库,具有简单的原子操作集,胜任复杂的数据操作。
保持库向后兼容
可参考的例子非常多
可以方便集成到产品中.
没有额外的导入.当实现算法的时候,我们通常要在时间效率与内存消耗之间权衡,我们选择在内存首先的情况下,不断优化得到最好的时间效率;线程安全不是重点,应该在更高的应用层上处理。
囊括了列表,栈,图,树等基本数据结构 ,集合实现了HashSet, TreeSet, LinkedHashSet,列表实现ArrayList, SinglyLinkedList, DoublyLinkedList,对栈实现LinkedListStack, ArrayStack,图实现了HashMap, TreeMap, HashBidiMap, TreeBidiMap, LinkedHashMap,树实现了RedBlackTree, AVLTree, BTree,BinaryHeap,都经过性能测试的考验,值得信赖。
对于Golang开发而言,gods对底层数据结构做很好的封装,Social Explorer团队在数据处理领域,数据可视化领域有极具竞争力的产品,相信在数据处理领域有很深的积淀,才创造这么优秀的框架,由于篇幅限制,相关图片展示效果不好,感兴趣的上官网去看看。
官网:
GitHub
希望大家能从emirpasic/gods学到有价值的东西。
愿我们在Go 语言的学习之路上 从此结伴而行