符合中小企业对网站设计、功能常规化式的企业展示型网站建设
本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...
商城网站建设因基本功能的需求不同费用上面也有很大的差别...
手机微信网站开发、微信官网、微信商城网站...
zip() 功能是从参数的多个迭代器中选取元素组合成一个新的迭代器。顾名思义,它就是一个将对象进行打包和解包的函数。
创新互联是一家从事企业网站建设、成都网站设计、成都网站制作、行业门户网站建设、网页设计制作的专业网站设计公司,拥有经验丰富的网站建设工程师和网页设计人员,具备各种规模与类型网站建设的实力,在网站建设领域树立了自己独特的设计风格。自公司成立以来曾独立设计制作的站点1000+。
它可以传入的参数包括;元组、列表、字典等迭代器
它返回一个zip对象,其内部元素为元组,一组一组的,可以转化为列表或元组,这里要强调一下,Python2和Python3中返回的zip对象有所不同。
Python3中zip()函数再不再返回list对象,但是可以通过list强行转换。(类似的函数变化还有dictionary关联的keys()、values()、items(),map(),filter())。
打包zip(iterables)
上面的代码使用的环境是Python3.6,其中list (z)操作就是强制转换。注意一个问题,a和b这两个列表是不同长短的,这时候zip函数就会匹配完最短的那个便结束。
当zip函数的参数只有一个时,它将从iterable中依次取一个元素,组成一个元组。
解包zip(*iterables)
解包,zip 相反,可理解为解压,返回多维矩阵形式,有几个组元素就返回几维的。
比如,下面我是用三个列表组合起来的迭代式,那么解压后就返回三维的矩阵
zip高级用法
讲完了基本的再来说一下该函数的高级用法。高级用法离不开一个词:Pythonic,就是将代码写的更优雅美观,看起来有逼格!
1. 列表推导
例如:
a = [1,2,3,4]
b = [5,6,7,8]
我们要同时遍历a、b,且要对它们进行操作,那就要放在同一个for循环内,zip函数正好合适
注意:如果是Python2环境中,要使用izip才能提高效率。
当然,如果你需要对下标进行操作,那么还需要加上enumerate函数
2. 使用zip创建键值对,zip方法返回的是一个元组,用它来创建键值对,简单明了。
一、zip函数的功能如下:
将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。当各个迭代器中元素的个数不一致时,则返回列表中长度最短的情况,利用 *号操作符,可以将元组解压为列表。
二、Python.3.x中使用zip函数生成列表的方法如下:
1、作出说明,使用zip函数将可迭代的对象作为参数。
2、将对象中对应的元素打包成一个个元组。
3、用zip函数平行地遍历多个迭代器,如果可迭代对象的长度不相同将按短的序列为准。
4、遍历过程中产生元组,Python.3.x会把元组生成好,然后生成列表。
a=[1,2,3,4,5,6,7,8,9]
b=[5,9,2,4,5,7,3,1,7]
c=list(zip(a,b))#打包
print(c)
输出内容:[[1,5],[2,9],[3,2],[4,4],[5,5],[6,7],[7,3],[8,1],[9,7]]
d=list(zip(*c))#解包
print(d)
输出内容:[[1,2,3,4,5,6,7,8,9],[5,9,2,4,5,7,3,1,7]]
定义:zip([iterable,
...])
zip()是Python的一个内建函数,它接受一系列可迭代的对象作为参数,将对象中对应的元素打包成一个个tuple(元组),然后返回由这些
tuples组成的list(列表)。若传入参数的长度不等,则返回list的长度和参数中长度最短的对象相同。利用*号操作符,可以将list
unzip(解压),看下面的例子就明白了:
1
2
3
4
5
6
7
8
9
a
=
[1,2,3]
b
=
[4,5,6]
c
=
[4,5,6,7,8]
zipped
=
zip(a,b)
[(1,
4),
(2,
5),
(3,
6)]
zip(a,c)
[(1,
4),
(2,
5),
(3,
6)]
zip(*zipped)
[(1,
2,
3),
(4,
5,
6)]
对于这个并不是很常用函数,下面举几个例子说明它的用法:
*
二维矩阵变换(矩阵的行列互换)
比如我们有一个由列表描述的二维矩阵
a
=
[[1,
2,
3],
[4,
5,
6],
[7,
8,
9]]
通过python列表推导的方法,我们也能轻易完成这个任务
1
2
[
[row[col]
for
row
in
a]
for
col
in
range(len(a[0]))]
[[1,
4,
7],
[2,
5,
8],
[3,
6,
9]]
另外一种让人困惑的方法就是利用zip函数:
1
2
3
4
5
a
=
[[1,
2,
3],
[4,
5,
6],
[7,
8,
9]]
zip(*a)
[(1,
4,
7),
(2,
5,
8),
(3,
6,
9)]
map(list,zip(*a))
[[1,
4,
7],
[2,
5,
8],
[3,
6,
9]]
这种方法速度更快但也更难以理解,将list看成tuple解压,恰好得到我们“行列互换”的效果,再通过对每个元素应用list()函数,将tuple转换为list
*
以指定概率获取元素
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import
random
def
random_pick(seq,probabilities):
x
=
random.uniform(0,
1)
cumulative_probability
=
0.0
for
item,
item_probability
in
zip(seq,
probabilities):
cumulative_probability
+=
item_probability
if
x
cumulative_probability:
break
return
item
for
i
in
range(15):
random_pick("abc",[0.1,0.3,0.6])
'c'
'b'
'c'
'c'
'a'
'b'
'c'
'c'
'c'
'a'
'b'
'b'
'c'
'a'
'c'
这个函数有个限制,指定概率的列表必须和元素一一对应,而且和为1,否则这个函数可能不能像预想的那样工作。
稍微解释下,先利用random.uniform()函数生成一个0-1之间的随机数并复制给x,利用zip()函数将元素和他对应的概率打包成tuple,然后将每个元素的概率进行叠加,直到和大于x终止循环
这样,”a”被选中的概率就是x取值位于0-0.1的概率,同理”b”为0.1-0.4,”c”为0.4-1.0,假设x是在0-1之间平均取值的,显然我们的目的已经达到
当然是有的!下面具体分析不同:\x0d\x0a\x0d\x0azip方法在Python 2 和Python 3中的不同\x0d\x0a\x0d\x0a为何有这种不同\x0d\x0a更多注解\x0d\x0a\x0d\x0a问题一:zip方法在Python 2 和Python 3中的不同\x0d\x0aPython 2 的代码演示:\x0d\x0a$ python2\x0d\x0a a = zip((1, 2), (3, 4))\x0d\x0a a\x0d\x0a[(1, 2), (3, 4)]\x0d\x0a# 可以看到这里返回的是一个list\x0d\x0a\x0d\x0aPython 3 的代码演示:\x0d\x0a$ python3\x0d\x0a a = zip((1, 2), (3, 4))\x0d\x0a a\x0d\x0a\x0d\x0a# 可以看到这里返回的是一个对象,这里就是2和3的不同点\x0d\x0a dir(a) # 查看a的相关属性\x0d\x0a['__class__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__iter__', '__le__', '__lt__', '__ne__', '__new__', '__next__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__']\x0d\x0a# 这里值得注意的是 '__iter__' 和 '__next__' 方法,说明a是一个支持遍历的对象\x0d\x0a# 既然知道了a是一个支持遍历的对象,我们也就基本明白了a的用法了\x0d\x0a### 和Python2的区别(一):返回的是一个支持遍历的对象,而不是一个list本身\x0d\x0a for i in a: print i # in 方法\x0d\x0a...\x0d\x0a(1, 3)\x0d\x0a(2, 4)\x0d\x0a next(a) # 我们测试__next__方法\x0d\x0aTraceback (most recent call last):\x0d\x0a File "", line 1, in \x0d\x0aStopIteration # 说明next方法是支持的,但是这里也说明了对象只能遍历一次\x0d\x0a a = zip((1, 2), (3, 4)) # 这里需要重新赋值,因为这个对象只能遍历一次\x0d\x0a next(a)\x0d\x0a(1, 3) # 运行良好\x0d\x0a### 返回的对象支持遍历的操作\x0d\x0a\x0d\x0a问题二:为何有这种不同\x0d\x0a我想最重要的原因是节约了不少的内存吧。Python的运行效率和编译类型的语言自然是没法比,但是能优化就优化一点吧~谁不想有更高的追求呢。\x0d\x0a问题三:更多注解\x0d\x0a这个zip在不同版本的不同反应了python的一个演变:大部分返回list的函数不在返回list,而是返回一个支持遍历的对象,比如map、fiter之类的,基本的例子如下:\x0d\x0a$ python3\x0d\x0a a = map(abs, [1, 2, -3])\x0d\x0a a\x0d\x0a\x0d\x0a list(a) # 如果不习惯,可以自己手动转化为list,也是写兼容代码需要注意的地方\x0d\x0a[1, 2, 3]\x0d\x0a\x0d\x0a$ python2\x0d\x0a a = map(abs, [1, 2, -3])\x0d\x0a a\x0d\x0a[1, 2, 3]