网创优客建站品牌官网
为成都网站建设公司企业提供高品质网站建设
热线:028-86922220
成都专业网站建设公司

定制建站费用3500元

符合中小企业对网站设计、功能常规化式的企业展示型网站建设

成都品牌网站建设

品牌网站建设费用6000元

本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...

成都商城网站建设

商城网站建设费用8000元

商城网站建设因基本功能的需求不同费用上面也有很大的差别...

成都微信网站建设

手机微信网站建站3000元

手机微信网站开发、微信官网、微信商城网站...

建站知识

当前位置:首页 > 建站知识

go语言全局变量加锁 go语言锁机制

(十一)golang 内存分析

编写过C语言程序的肯定知道通过malloc()方法动态申请内存,其中内存分配器使用的是glibc提供的ptmalloc2。 除了glibc,业界比较出名的内存分配器有Google的tcmalloc和Facebook的jemalloc。二者在避免内存碎片和性能上均比glic有比较大的优势,在多线程环境中效果更明显。

创新互联公司坚持“要么做到,要么别承诺”的工作理念,服务领域包括:成都网站制作、成都网站设计、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的三门峡网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!

Golang中也实现了内存分配器,原理与tcmalloc类似,简单的说就是维护一块大的全局内存,每个线程(Golang中为P)维护一块小的私有内存,私有内存不足再从全局申请。另外,内存分配与GC(垃圾回收)关系密切,所以了解GC前有必要了解内存分配的原理。

为了方便自主管理内存,做法便是先向系统申请一块内存,然后将内存切割成小块,通过一定的内存分配算法管理内存。 以64位系统为例,Golang程序启动时会向系统申请的内存如下图所示:

预申请的内存划分为spans、bitmap、arena三部分。其中arena即为所谓的堆区,应用中需要的内存从这里分配。其中spans和bitmap是为了管理arena区而存在的。

arena的大小为512G,为了方便管理把arena区域划分成一个个的page,每个page为8KB,一共有512GB/8KB个页;

spans区域存放span的指针,每个指针对应一个page,所以span区域的大小为(512GB/8KB)乘以指针大小8byte = 512M

bitmap区域大小也是通过arena计算出来,不过主要用于GC。

span是用于管理arena页的关键数据结构,每个span中包含1个或多个连续页,为了满足小对象分配,span中的一页会划分更小的粒度,而对于大对象比如超过页大小,则通过多页实现。

根据对象大小,划分了一系列class,每个class都代表一个固定大小的对象,以及每个span的大小。如下表所示:

上表中每列含义如下:

class: class ID,每个span结构中都有一个class ID, 表示该span可处理的对象类型

bytes/obj:该class代表对象的字节数

bytes/span:每个span占用堆的字节数,也即页数乘以页大小

objects: 每个span可分配的对象个数,也即(bytes/spans)/(bytes/obj)waste

bytes: 每个span产生的内存碎片,也即(bytes/spans)%(bytes/obj)上表可见最大的对象是32K大小,超过32K大小的由特殊的class表示,该class ID为0,每个class只包含一个对象。

span是内存管理的基本单位,每个span用于管理特定的class对象, 跟据对象大小,span将一个或多个页拆分成多个块进行管理。src/runtime/mheap.go:mspan定义了其数据结构:

以class 10为例,span和管理的内存如下图所示:

spanclass为10,参照class表可得出npages=1,nelems=56,elemsize为144。其中startAddr是在span初始化时就指定了某个页的地址。allocBits指向一个位图,每位代表一个块是否被分配,本例中有两个块已经被分配,其allocCount也为2。next和prev用于将多个span链接起来,这有利于管理多个span,接下来会进行说明。

有了管理内存的基本单位span,还要有个数据结构来管理span,这个数据结构叫mcentral,各线程需要内存时从mcentral管理的span中申请内存,为了避免多线程申请内存时不断的加锁,Golang为每个线程分配了span的缓存,这个缓存即是cache。src/runtime/mcache.go:mcache定义了cache的数据结构

alloc为mspan的指针数组,数组大小为class总数的2倍。数组中每个元素代表了一种class类型的span列表,每种class类型都有两组span列表,第一组列表中所表示的对象中包含了指针,第二组列表中所表示的对象不含有指针,这么做是为了提高GC扫描性能,对于不包含指针的span列表,没必要去扫描。根据对象是否包含指针,将对象分为noscan和scan两类,其中noscan代表没有指针,而scan则代表有指针,需要GC进行扫描。mcache和span的对应关系如下图所示:

mchache在初始化时是没有任何span的,在使用过程中会动态的从central中获取并缓存下来,跟据使用情况,每种class的span个数也不相同。上图所示,class 0的span数比class1的要多,说明本线程中分配的小对象要多一些。

cache作为线程的私有资源为单个线程服务,而central则是全局资源,为多个线程服务,当某个线程内存不足时会向central申请,当某个线程释放内存时又会回收进central。src/runtime/mcentral.go:mcentral定义了central数据结构:

lock: 线程间互斥锁,防止多线程读写冲突

spanclass : 每个mcentral管理着一组有相同class的span列表

nonempty: 指还有内存可用的span列表

empty: 指没有内存可用的span列表

nmalloc: 指累计分配的对象个数线程从central获取span步骤如下:

将span归还步骤如下:

从mcentral数据结构可见,每个mcentral对象只管理特定的class规格的span。事实上每种class都会对应一个mcentral,这个mcentral的集合存放于mheap数据结构中。src/runtime/mheap.go:mheap定义了heap的数据结构:

lock: 互斥锁

spans: 指向spans区域,用于映射span和page的关系

bitmap:bitmap的起始地址

arena_start: arena区域首地址

arena_used: 当前arena已使用区域的最大地址

central: 每种class对应的两个mcentral

从数据结构可见,mheap管理着全部的内存,事实上Golang就是通过一个mheap类型的全局变量进行内存管理的。mheap内存管理示意图如下:

系统预分配的内存分为spans、bitmap、arean三个区域,通过mheap管理起来。接下来看内存分配过程。

针对待分配对象的大小不同有不同的分配逻辑:

(0, 16B) 且不包含指针的对象: Tiny分配

(0, 16B) 包含指针的对象:正常分配

[16B, 32KB] : 正常分配

(32KB, -) : 大对象分配其中Tiny分配和大对象分配都属于内存管理的优化范畴,这里暂时仅关注一般的分配方法。

以申请size为n的内存为例,分配步骤如下:

Golang内存分配是个相当复杂的过程,其中还掺杂了GC的处理,这里仅仅对其关键数据结构进行了说明,了解其原理而又不至于深陷实现细节。1、Golang程序启动时申请一大块内存并划分成spans、bitmap、arena区域

2、arena区域按页划分成一个个小块。

3、span管理一个或多个页。

4、mcentral管理多个span供线程申请使用

5、mcache作为线程私有资源,资源来源于mcentral。

go语言的map多协程访问时需要加锁吗

go语言的map多协程访问时需要加锁

支持==和!=操作就可以做key,实际上只有function、map、slice三个kind不支持作为key,因为只能和nil比较不能和另一个值比较。布尔、整型、浮点、复数、字符串、指针、channel等都可以做key。

struct能不能做key要看每一个字段,如果所有字段都可以做key,那这个struct就可以。有一个字段不能做key,这个struct就不能做key。array也是,元素类型能做key,那这个array就可以。

例如:

type Foo map[struct {

B bool

I int

F float64

C complex128

S string

P *Foo

Ch chan Foo

}]bool

每一个字段都可以做key,Foo就可以做key。再如:

type Foo map[struct {

Fn func() Foo

M map[*Foo]int

S []Foo

}]bool

有一个字段不能做key、Foo就不允许做key,而这三个字段都不能。

字段是递归检查的:

type Foo map[struct {

Sub struct {

M map[*Foo]bool

}

}]bool

Sub的M字段不能做key,Sub就不能做key,Foo也就不能做key。

总之想把一个数据结构用于map的key,就不能包含function、map和slice。

Go语言——sync.Map详解

sync.Map是1.9才推荐的并发安全的map,除了互斥量以外,还运用了原子操作,所以在这之前,有必要了解下 Go语言——原子操作

go1.10\src\sync\map.go

entry分为三种情况:

从read中读取key,如果key存在就tryStore。

注意这里开始需要加锁,因为需要操作dirty。

条目在read中,首先取消标记,然后将条目保存到dirty里。(因为标记的数据不在dirty里)

最后原子保存value到条目里面,这里注意read和dirty都有条目。

总结一下Store:

这里可以看到dirty保存了数据的修改,除非可以直接原子更新read,继续保持read clean。

有了之前的经验,可以猜测下load流程:

与猜测的 区别 :

由于数据保存两份,所以删除考虑:

先看第二种情况。加锁直接删除dirty数据。思考下貌似没什么问题,本身就是脏数据。

第一种和第三种情况唯一的区别就是条目是否被标记。标记代表删除,所以直接返回。否则CAS操作置为nil。这里总感觉少点什么,因为条目其实还是存在的,虽然指针nil。

看了一圈貌似没找到标记的逻辑,因为删除只是将他变成nil。

之前以为这个逻辑就是简单的将为标记的条目拷贝给dirty,现在看来大有文章。

p == nil,说明条目已经被delete了,CAS将他置为标记删除。然后这个条目就不会保存在dirty里面。

这里其实就跟miss逻辑串起来了,因为miss达到阈值之后,dirty会全量变成read,也就是说标记删除在这一步最终删除。这个还是很巧妙的。

真正的删除逻辑:

很绕。。。。

两个线程加锁累加全局变量,全局变量的值一定正确吗

两个线程加锁累加全局变量,全局变量的值一定正确。当VALUE的数据很大时,两个线程同时执行的概率就很大,导致计算不准确,以至于产生脏数据,所以对数据加锁是必要的。

go语言中全局变量和局部变量的区别

局部变量

在函数体内声明的变量称之为局部变量,它们的作用域只在函数体内,参数和返回值变量也是局部变量。

以下实例中 main() 函数使用了局部变量 a, b, c:

package main

import "fmt"

func main() {

/* 声明局部变量 */

var a, b, c int

/* 初始化参数 */

a = 10

b = 20

c = a + b

fmt.Printf ("结果: a = %d, b = %d and c = %d\n", a, b, c)

}

以上实例执行输出结果为:

结果: a = 10, b = 20 and c = 30

全局变量

在函数体外声明的变量称之为全局变量,全局变量可以在整个包甚至外部包(被导出后)使用。

全局变量可以在任何函数中使用,以下实例演示了如何使用全局变量:

package main

import "fmt"

/* 声明全局变量 */

var g int

func main() {

/* 声明局部变量 */

var a, b int

/* 初始化参数 */

a = 10

b = 20

g = a + b

fmt.Printf("结果: a = %d, b = %d and g = %d\n", a, b, g)

}

以上实例执行输出结果为:

结果: a = 10, b = 20 and g = 30

Go 语言程序中全局变量与局部变量名称可以相同,但是函数内的局部变量会被优先考虑。实例如下:

package main

import "fmt"

/* 声明全局变量 */

var g int = 20

func main() {

/* 声明局部变量 */

var g int = 10

fmt.Printf ("结果: g = %d\n", g)

}

以上实例执行输出结果为:

结果: g = 10

多线程读一个全局变量要不要加锁?还是说只是当修改全局变量的时候才要加锁?

如果所有线程都只读取该变量的话不必加锁,因为仅读取不存在破坏数据的风险,如果有线程写该变量的话不管读取还是写入都要加锁的。

windowsAPI提供了一种Sim读写锁,允许所有读线程在同一时刻访问该资源,而写线程在写入时独占资源。


网站名称:go语言全局变量加锁 go语言锁机制
文章来源:http://bjjierui.cn/article/dodegss.html

其他资讯