符合中小企业对网站设计、功能常规化式的企业展示型网站建设
本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...
商城网站建设因基本功能的需求不同费用上面也有很大的差别...
手机微信网站开发、微信官网、微信商城网站...
读研期间多跟着导师做项目,有些导师手上有很多横向项目,是参与实践的良好途径,其实有人读研期间跟上班一样忙,不要让学校时光虚度。另外,你年龄不小了,可以在读书期间思考以后就业的问题,读书时成家政策也支持,当然有合适的结婚对象才行。
专注于为中小企业提供网站制作、成都网站建设服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业仪征免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了上千多家企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。
最简单的你可以使用Matlab自带的NaiveBayes.fit()函数。
如果一定要自己设计,你可以采用one-versus-all策略,将多个二元分类器组合成多元分类器。
祝你成功。
大数据分析工具详尽介绍数据分析算法
1、 Hadoop
Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop 还是可伸缩的,能够处理 PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。
Hadoop是一个能够让用户轻松架构和使用的分布式计算平台。用户可以轻松地在Hadoop上开发和运行处理海量数据的应用程序。它主要有以下几个优点:
⒈高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖。
⒉高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。
⒊高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。
⒋高容错性。Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。
Hadoop带有用 Java 语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。Hadoop 上的应用程序也可以使用其他语言编写,比如 C++。
2、 HPCC
HPCC,High Performance Computing and Communications(高性能计算与通信)的缩写。1993年,由美国科学、工程、技术联邦协调理事会向国会提交了“重大挑战项目:高性能计算与 通信”的报告,也就是被称为HPCC计划的报告,即美国总统科学战略项目,其目的是通过加强研究与开发解决一批重要的科学与技术挑战问题。HPCC是美国 实施信息高速公路而上实施的计划,该计划的实施将耗资百亿美元,其主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆 比特网络技术,扩展研究和教育机构及网络连接能力。
该项目主要由五部分组成:
1、高性能计算机系统(HPCS),内容包括今后几代计算机系统的研究、系统设计工具、先进的典型系统及原有系统的评价等;
2、先进软件技术与算法(ASTA),内容有巨大挑战问题的软件支撑、新算法设计、软件分支与工具、计算计算及高性能计算研究中心等;
3、国家科研与教育网格(NREN),内容有中接站及10亿位级传输的研究与开发;
4、基本研究与人类资源(BRHR),内容有基础研究、培训、教育及课程教材,被设计通过奖励调查者-开始的,长期 的调查在可升级的高性能计算中来增加创新意识流,通过提高教育和高性能的计算训练和通信来加大熟练的和训练有素的人员的联营,和来提供必需的基础架构来支 持这些调查和研究活动;
5、信息基础结构技术和应用(IITA ),目的在于保证美国在先进信息技术开发方面的领先地位。
3、 Storm
Storm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量数据。Storm很简单,支持许多种编程语言,使用起来非常有趣。Storm由Twitter开源而来,其它知名的应用企业包括Groupon、淘宝、支付宝、阿里巴巴、乐元素、Admaster等等。
Storm有许多应用领域:实时分析、在线机器学习、不停顿的计算、分布式RPC(远过程调用协议,一种通过网络从远程计算机程序上请求服务)、 ETL(Extraction-Transformation-Loading的缩写,即数据抽取、转换和加载)等等。Storm的处理速度惊人:经测 试,每个节点每秒钟可以处理100万个数据元组。Storm是可扩展、容错,很容易设置和操作。
4、 Apache Drill
为了帮助企业用户寻找更为有效、加快Hadoop数据查询的方法,Apache软件基金会近日发起了一项名为“Drill”的开源项目。Apache Drill 实现了 Google’s Dremel.
据Hadoop厂商MapR Technologies公司产品经理Tomer Shiran介绍,“Drill”已经作为Apache孵化器项目来运作,将面向全球软件工程师持续推广。
该项目将会创建出开源版本的谷歌Dremel Hadoop工具(谷歌使用该工具来为Hadoop数据分析工具的互联网应用提速)。而“Drill”将有助于Hadoop用户实现更快查询海量数据集的目的。
“Drill”项目其实也是从谷歌的Dremel项目中获得灵感:该项目帮助谷歌实现海量数据集的分析处理,包括分析抓取Web文档、跟踪安装在Android Market上的应用程序数据、分析垃圾邮件、分析谷歌分布式构建系统上的测试结果等等。
通过开发“Drill”Apache开源项目,组织机构将有望建立Drill所属的API接口和灵活强大的体系架构,从而帮助支持广泛的数据源、数据格式和查询语言。
5、 RapidMiner
RapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。
功能和特点
免费提供数据挖掘技术和库
100%用Java代码(可运行在操作系统)
数据挖掘过程简单,强大和直观
内部XML保证了标准化的格式来表示交换数据挖掘过程
可以用简单脚本语言自动进行大规模进程
多层次的数据视图,确保有效和透明的数据
图形用户界面的互动原型
命令行(批处理模式)自动大规模应用
Java API(应用编程接口)
简单的插件和推广机制
强大的可视化引擎,许多尖端的高维数据的可视化建模
400多个数据挖掘运营商支持
耶鲁大学已成功地应用在许多不同的应用领域,包括文本挖掘,多媒体挖掘,功能设计,数据流挖掘,集成开发的方法和分布式数据挖掘。
6、 Pentaho BI
Pentaho BI 平台不同于传统的BI 产品,它是一个以流程为中心的,面向解决方案(Solution)的框架。其目的在于将一系列企业级BI产品、开源软件、API等等组件集成起来,方便商务智能应用的开发。它的出现,使得一系列的面向商务智能的独立产品如Jfree、Quartz等等,能够集成在一起,构成一项项复杂的、完整的商务智能解决方案。
Pentaho BI 平台,Pentaho Open BI 套件的核心架构和基础,是以流程为中心的,因为其中枢控制器是一个工作流引擎。工作流引擎使用流程定义来定义在BI 平台上执行的商业智能流程。流程可以很容易的被定制,也可以添加新的流程。BI 平台包含组件和报表,用以分析这些流程的性能。目前,Pentaho的主要组成元素包括报表生成、分析、数据挖掘和工作流管理等等。这些组件通过 J2EE、WebService、SOAP、HTTP、Java、JavaScript、Portals等技术集成到Pentaho平台中来。 Pentaho的发行,主要以Pentaho SDK的形式进行。
Pentaho SDK共包含五个部分:Pentaho平台、Pentaho示例数据库、可独立运行的Pentaho平台、Pentaho解决方案示例和一个预先配制好的 Pentaho网络服务器。其中Pentaho平台是Pentaho平台最主要的部分,囊括了Pentaho平台源代码的主体;Pentaho数据库为 Pentaho平台的正常运行提供的数据服务,包括配置信息、Solution相关的信息等等,对于Pentaho平台来说它不是必须的,通过配置是可以用其它数据库服务取代的;可独立运行的Pentaho平台是Pentaho平台的独立运行模式的示例,它演示了如何使Pentaho平台在没有应用服务器支持的情况下独立运行;
Pentaho解决方案示例是一个Eclipse工程,用来演示如何为Pentaho平台开发相关的商业智能解决方案。
Pentaho BI 平台构建于服务器,引擎和组件的基础之上。这些提供了系统的J2EE 服务器,安全,portal,工作流,规则引擎,图表,协作,内容管理,数据集成,分析和建模功能。这些组件的大部分是基于标准的,可使用其他产品替换之。
7、 SAS Enterprise Miner
§ 支持整个数据挖掘过程的完备工具集
§ 易用的图形界面,适合不同类型的用户快速建模
§ 强大的模型管理和评估功能
§ 快速便捷的模型发布机制, 促进业务闭环形成
数据分析算法
大数据分析主要依靠机器学习和大规模计算。机器学习包括监督学习、非监督学习、强化学习等,而监督学习又包括分类学习、回归学习、排序学习、匹配学习等(见图1)。分类是最常见的机器学习应用问题,比如垃圾邮件过滤、人脸检测、用户画像、文本情感分析、网页归类等,本质上都是分类问题。分类学习也是机器学习领域,研究最彻底、使用最广泛的一个分支。
最近、Fernández-Delgado等人在JMLR(Journal of Machine Learning Research,机器学习顶级期刊)杂志发表了一篇有趣的论文。他们让179种不同的分类学习方法(分类学习算法)在UCI 121个数据集上进行了“大比武”(UCI是机器学习公用数据集,每个数据集的规模都不大)。结果发现Random Forest(随机森林)和SVM(支持向量机)名列第一、第二名,但两者差异不大。在84.3%的数据上、Random Forest压倒了其它90%的方法。也就是说,在大多数情况下,只用Random Forest 或 SVM事情就搞定了。
KNN
K最近邻算法。给定一些已经训练好的数据,输入一个新的测试数据点,计算包含于此测试数据点的最近的点的分类情况,哪个分类的类型占多数,则此测试点的分类与此相同,所以在这里,有的时候可以复制不同的分类点不同的权重。近的点的权重大点,远的点自然就小点。详细介绍链接
Naive Bayes
朴素贝叶斯算法。朴素贝叶斯算法是贝叶斯算法里面一种比较简单的分类算法,用到了一个比较重要的贝叶斯定理,用一句简单的话概括就是条件概率的相互转换推导。详细介绍链接
朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。通俗来说,就好比这么个道理,你在街上看到一个黑人,我问你你猜这哥们哪里来的,你十有八九猜非洲。为什么呢?因为黑人中非洲人的比率最高,当然人家也可能是美洲人或亚洲人,但在没有其它可用信息下,我们会选择条件概率最大的类别,这就是朴素贝叶斯的思想基础。
SVM
支持向量机算法。支持向量机算法是一种对线性和非线性数据进行分类的方法,非线性数据进行分类的时候可以通过核函数转为线性的情况再处理。其中的一个关键的步骤是搜索最大边缘超平面。详细介绍链接
Apriori
Apriori算法是关联规则挖掘算法,通过连接和剪枝运算挖掘出频繁项集,然后根据频繁项集得到关联规则,关联规则的导出需要满足最小置信度的要求。详细介绍链接
PageRank
网页重要性/排名算法。PageRank算法最早产生于Google,核心思想是通过网页的入链数作为一个网页好快的判定标准,如果1个网页内部包含了多个指向外部的链接,则PR值将会被均分,PageRank算法也会遭到LinkSpan攻击。详细介绍链接
RandomForest
随机森林算法。算法思想是决策树+boosting.决策树采用的是CART分类回归数,通过组合各个决策树的弱分类器,构成一个最终的强分类器,在构造决策树的时候采取随机数量的样本数和随机的部分属性进行子决策树的构建,避免了过分拟合的现象发生。详细介绍链接
Artificial Neural Network
“神经网络”这个词实际是来自于生物学,而我们所指的神经网络正确的名称应该是“人工神经网络(ANNs)”。
人工神经网络也具有初步的自适应与自组织能力。在学习或训练过程中改变突触权重值,以适应周围环境的要求。同一网络因学习方式及内容不同可具有不同的功能。人工神经网络是一个具有学习能力的系统,可以发展知识,以致超过设计者原有的知识水平。通常,它的学习训练方式可分为两种,一种是有监督或称有导师的学习,这时利用给定的样本标准进行分类或模仿;另一种是无监督学习或称无为导师学习,这时,只规定学习方式或某些规则,则具体的学习内容随系统所处环境 (即输入信号情况)而异,系统可以自动发现环境特征和规律性,具有更近似人脑的功能。
如何使用JavaScript构建机器学习模型
目前,机器学习领域建模的主要语言是 Python 和 R,前不久腾讯推出的机器学习框架 Angel 则支持 Java 和 Scala。本文作者 Abhishek Soni 则用行动告诉我们,开发机器学习模型,JavaScript 也可以。
JavaScript?我不是应该使用 Python 吗?甚至 Scikit-learn 在 JavaScript 上都不工作。
这是可能的,实际上,连我自己都惊讶于开发者对此忽视的态度。就 Scikit-learn 而言,Javascript 的开发者事实上已经推出了适用的库,它会在本文中有所提及。那么,让我们看看 Javascript 在机器学习上能够做什么吧。
根据人工智能先驱 Arthur Samuel 的说法,机器学习为计算机提供了无需明确编程的学习能力。换句话说,它使得计算机能够自我学习并执行正确的指令,无需人类提供全部指导。
谷歌已经把自己移动优先的策略转换到人工智能优先很久了。
为什么 JavaScript 在机器学习界未被提及过?
慢(真的假的?)
矩阵操作很困难(这里有库,比如 math.js)
仅用于 Web 开发(然而这里还有 Node.js)
机器学习库通常是在 Python 上的(还好,JS 的开发者人数也不少)
在 JavaScript 中有一些可供使用的预制库,其中包含一些机器学习算法,如线性回归、SVM、朴素贝叶斯等等,以下是其中的一部分。
brain.js(神经网络)
Synaptic(神经网络)
Natural(自然语言处理)
ConvNetJS(卷积神经网络)
mljs(一组具有多种功能的子库)
首先,我们将使用 mljs 回归库来进行一些线性回归操作。
参考代码:
1. 安装库
$ npm install ml-regression csvtojson
$ yarn add ml-regression csvtojson
ml-regression 正如其名,负责机器学习的线性回归。
csvtojson 是一个用于 node.js 的快速 CSV 解析器,它允许加载 CSV 数据文件并将其转换为 JSON。
2. 初始化并加载数据
下载数据文件(.csv),并将其加入你的项目。
链接:
如果你已经初始化了一个空的 npm 项目,打开 index.js,输入以下代码。
const ml = require('ml-regression');
const csv = require('csvtojson');
const SLR = ml.SLR; // Simple Linear Regression
const csvFilePath = 'advertising.csv'; // Data
let csvData = [], // parsed Data
X = [], // Input
y = []; // Output
let regressionModel;
我把文件放在了项目的根目录下,如果你想放在其他地方,请记得更新 csvFilePath。
现在我们使用 csvtojson 的 fromFile 方法加载数据文件:
csv()
.fromFile(csvFilePath)
.on('json', (jsonObj) = {
csvData.push(jsonObj);
})
.on('done', () = {
dressData(); // To get data points from JSON Objects
performRegression();
});
3. 打包数据,准备执行
JSON 对象被存储在 csvData 中,我们还需要输入数据点数组和输出数据点。我们通过一个填充 X 和 Y 变量的 dressData 函数来运行数据。
function dressData() {
/**
* One row of the data object looks like:
* {
* TV: "10",
* Radio: "100",
* Newspaper: "20",
* "Sales": "1000"
* }
*
* Hence, while adding the data points,
* we need to parse the String value as a Float.
*/
csvData.forEach((row) = {
X.push(f(row.Radio));
y.push(f(row.Sales));
});
}
function f(s) {
return parseFloat(s);
}
4. 训练模型开始预测
数据已经打包完毕,是时候训练我们的模型了。
为此,我们需要写一个 performRegression 函数:
function performRegression() {
regressionModel = new SLR(X, y); // Train the model on training data
console.log(regressionModel.toString(3));
predictOutput();
}
performRegression 函数有一个方法 toString,它为浮点输出获取一个名为 precision 的参数。predictOutput 函数能让你输入数值,然后将模型的输出传到控制台。它是这样的(注意,我使用的是 Node.js 的 readline 工具):
function predictOutput() {
rl.question('Enter input X for prediction (Press CTRL+C to exit) : ', (answer) = {
console.log(`At X = ${answer}, y = ${regressionModel.predict(parseFloat(answer))}`);
predictOutput();
});
}
以下是为了增加阅读用户的代码
const readline = require('readline'); // For user prompt to allow predictions
const rl = readline.createInterface({
input: process.stdin,
output: process.stdout
});
5. 大功告成!
遵循以上步骤,你的 index.js 应该是这样:
const ml = require('ml-regression');
const csv = require('csvtojson');
const SLR = ml.SLR; // Simple Linear Regression
const csvFilePath = 'advertising.csv'; // Data
let csvData = [], // parsed Data
X = [], // Input
y = []; // Output
let regressionModel;
const readline = require('readline'); // For user prompt to allow predictions
const rl = readline.createInterface({
input: process.stdin,
output: process.stdout
});
csv()
.fromFile(csvFilePath)
.on('json', (jsonObj) = {
csvData.push(jsonObj);
})
.on('done', () = {
dressData(); // To get data points from JSON Objects
performRegression();
});
function performRegression() {
regressionModel = new SLR(X, y); // Train the model on training data
console.log(regressionModel.toString(3));
predictOutput();
}
function dressData() {
/**
* One row of the data object looks like:
* {
* TV: "10",
* Radio: "100",
* Newspaper: "20",
* "Sales": "1000"
* }
*
* Hence, while adding the data points,
* we need to parse the String value as a Float.
*/
csvData.forEach((row) = {
X.push(f(row.Radio));
y.push(f(row.Sales));
});
}
function f(s) {
return parseFloat(s);
}
function predictOutput() {
rl.question('Enter input X for prediction (Press CTRL+C to exit) : ', (answer) = {
console.log(`At X = ${answer}, y = ${regressionModel.predict(parseFloat(answer))}`);
predictOutput();
});
}
到你的终端上运行 node index.js,得到的输出会是这样:
$ node index.js
f(x) = 0.202 * x + 9.31
Enter input X for prediction (Press CTRL+C to exit) : 151.5
At X = 151.5, y = 39.98974927911285
Enter input X for prediction (Press CTRL+C to exit) :
恭喜!你刚刚在 JavaScript 中训练了第一个线性回归模型。
都有 基于朴素贝叶斯分类器的文本分类算法(C语言).doc ,C++的改一下就行了。