符合中小企业对网站设计、功能常规化式的企业展示型网站建设
本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...
商城网站建设因基本功能的需求不同费用上面也有很大的差别...
手机微信网站开发、微信官网、微信商城网站...
吞吐率是一种关于计算机或数据通信系统(如网桥、路由器、网关或广域网连接等)数据传输率的测度。吞吐率通常是对一个系统和它的部件处理传输数据请求能力的总体评价。例如,一个服务器的吞吐率依赖于它的处理器类型、网络接口卡的类型、数据传输总线的大小、磁盘速度、内存缓冲器的体积,以及软件对这些部件进行管理的有效程度。在通信系统中,这个测度通常基于每秒能处理的数据位数或分组的数目,它依赖于网络的带宽和交换部件(如路由器或集线器)的速度。网络上两个端点设备间的吞吐率依赖于计算机、网络接口卡和连接它们的网络。
成都创新互联公司坚持“要么做到,要么别承诺”的工作理念,服务领域包括:成都做网站、网站制作、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的贡井网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!
吞吐率作为一个重要的衡量指标,最主要应用在并行处理上,属于系统结构中最重要的一个变量,它的定义是:单位时间的吞吐量。所以它的详细定义参见吞吐量。
吞吐量 (throughput)
定义:
对网络、设备、端口、虚电路或其他设施,单位时间内成功地传送数据的数量(以比特、字节、分组等测量)。
性能测试报告中吞吐量是一个非常重要的指标,该指标描述了被测系统在 一秒钟 内能够处理的 请求/交易数目 。吞吐量有时候也叫做每秒事务处理数(Transaction Per Second,简称TPS),TPS的粒度更大一些,落实到具体的测试脚本上,就是将一系列的请求组合成一笔交易,以这笔交易作为衡量吞吐量的最小粒度。但是吞吐量这个指标的数据有时候会“捣乱”,如果只是看其中的一些表面意义的话,解读出来的数据就会有很大的问题,甚至会误导对被测系统能力的判断。那XMeter君就来带领大家看一下吞吐量这个指标后面的秘密。
吞吐量的计算方式1:假设累积一段时间t秒的请求或者交易数目为c,计算吞吐量为:c/t = x(个/秒)。比如在一分钟内,被测系统能够处理30笔交易,那么该系统的吞吐量为30/60(秒)=0.5,我们称该系统的吞吐量为0.5。同理,如果在5秒钟内,被测系统能够处理6个请求,那么吞吐量为6/5=1.2。
吞吐量的计算方式2:如果针对单个用户单笔交易的处理时间为x秒,那么每秒能够处理的交易数为1/x。假设现有y个用户,假设系统能轻松处理这y个用户的请求,那么该系统的针对该交易的吞吐量为: y/x。根据此种计算方法,如果单笔交易时间是0.5秒,那么一秒钟能处理2笔交易,如果系统能够同时服务10个用户,那么该系统的吞吐量为20.
这两种计算方式都没有问题,正常情况下应该可以互相印证。但是我们现在来研究一下下面的这个JMeter测试脚本,该脚本非常简单,它的任务是判断每个虚拟用户里循环执行的次数,只有在偶数次的时候才会执行Debug Sampler里的请求。
- 计数器:用于计数,得到当前运行的次数。具体设置如下图所示,启动值为1,递增为1,最后把值存入iterationNum变量中
- 如果(If)控制器:用于判断是否执行Debug Sampler,逻辑如下,如果变量iterationNum是偶数的话Debug Sampler才会被执行。
Debug Sampler是JMeter提供的内置Sampler,主要任务用于打印JMeter的虚拟用户中的变量等值,用于调试脚本之用。该Sampler主要是从内存中读取并打印变量的值,没有网络等费时的操作,一般来说其执行速度会非常之快,由此可见如果执行上述测试脚本的时候,其吞吐量会非常的高。如下图所示,是该脚本在XMeter上运行的结果截屏。可以看到该Sampler的平均响应时间非常小,大概为0.01毫秒,按照我们脚本的逻辑,由于没有思考时间,而且该Sampler的执行速度非常快,所以基本上可以认为该脚本大概每隔百分之一毫秒就可以完成一次请求,那么在一秒钟内一个用户应该可以完成100000个请求,所以吞吐量应该大约为10万。可是读者看一下下面的测试报告会发现吞吐量才242!那么问题出在哪儿了?
我们来看一下,XMeter君得出10万的吞吐量是基于我们之前列出的第二种计算方式,这种计算方式有一个假设前提: 测试工具能够毫无延迟的情况下在完成了一次请求的时候,马上发出第二次请求 。回到我们的脚本,意味着第一次请求完成需要0.01毫秒,然后0.01毫秒之后JMete马上就可以发出第二次请求。我们可以看一下脚本里用了“如果(If)控制器”,该控制器里有一个表达式用于判断是否要执行Debug Sampler,问题主要就出在这个控制器上了:该控制器拖慢了JMeter执行脚本的速度,根据XMeter测试报告中实际的吞吐量的值,我们大概可以估算出该控制器的执行所需时间约为1000/242=4毫秒(Debug Sampler的时间量级与控制器的执行基本可以忽略不计了)。那有的同学可能就会说,这个JMeter也太差了吧,怎么会造成这么大的误差!不过你要是这么想可真冤枉了JMeter了,如果没有这些控制器的话,你怎么写出模拟各种业务场景的测试脚本呢?既想马儿不吃草,又想马儿跑得好,哪有这么两全其美的事情呢?
当然了,其实JMeter对于“如果(If)控制器”还是有优化的方法的,缺省的情况下该控制器用的是JavaScript的表达式运算方式,你想想每次执行的时候先JMeter需要把JavaScript引擎先起来,然后执行一下得到表达式的结果,这得花多少时间啊。在使用“如果(If)控制器”的时候可以用JMeter提供的jexl3函数来提高脚本执行效率,如下图所示,表达式变成了 ${__jexl3(${iterationNum} % 2 == 0)} 之后,同样的测试脚本吞吐量变成了1813,但是离100000的理论值还是差的很远,但是毕竟比刚才的测试结果已经提升了7倍多。
话说到这儿,读者是不是对JMeter生成的测试结果感到很不可靠?差不多的脚本,这个吞吐量的值也差的太远了。工具在实现的时候对功能的复杂性、易用性和准确性等方面都会综合考虑,我们这里举的例子比较极端,如果真正理解了背后的原理,是可以解决的。造成这个问题的根源在于:Sampler的响应时间太短,而脚本中别的元素执行时间远远超过了正常Sampler的执行时间,从而导致这么大的误差,了解了该问题,我们就可以在编写测试脚本的时候避免类似的问题。因此用户在写脚本的时候如果发现了被测服务的响应时间比较短,那么最好通过在Sampler之间增加比响应时间大几个数量级的思考时间,然后通过增加虚拟用户数目的方式来测试被测系统的吞吐量,尽量减少测试工具本身可能会对测试结果产生的不利影响。否则可能会得出“无法解释”的吞吐量报告。
吞吐量计算公式:吞吐量=并发数/平均响应时间,吞吐量是指对网络、设备、端口、虚电路或其他设施,单位时间内成功地传送数据的数量(以比特、字节、分组等测量)。
吞吐量是指对网络、设备、端口、虚电路或其他设施,单位时间内成功地传送数据的数量(以比特、字节、分组等测量)。
定义:防火墙吞吐量是指在没有帧丢失的情况下,设备能够接收并转发的最大数据速率。
相关知识:
吞吐量的大小主要由网络设备的内外网口硬件,及程序算法的效率决定,尤其是程序算法,对于像防火墙系统这样需要进行大量运算的设备来说,算法的低效率会使通信量大打折扣。
因此,大多数防火墙虽号称100M防火墙,由于其算法依靠软件实现,通信量远远没有达到100M,实际只有10M-20M。纯硬件防火墙,由于采用硬件进行运算,因此吞吐量可以接近线速,达到90-95M,是真正的100M防火墙。
吞吐量和报文转发率是关系网络设备应用的主要指标,一般采用FDT(Full Duplex Throughput)来衡量,指64字节数据包的全双工吞吐量,该指标既包括吞吐量指标也涵盖了报文转发率指标。
吞吐量的测试方法是:在测试中以一定速率发送一定数量的帧,并计算待测设备传输的帧,如果发送的帧与接收的帧数量相等,那么就将发送速率提高并重新测试;如果接收帧少于发送帧则降低发送速率重新测试,直至得出最终结果。吞吐量测试结果以比特/秒或字节/秒表示。
QPS(TPS)= 并发数/平均响应时间
一个系统吞吐量通常由QPS(TPS)、并发数两个因素决定,每套系统这两个值都有一个相对极限值,在应用场景访问压力下,只要某一项达到系统最高值,系统的吞吐量就上不去了。
相关知识
吞吐量的大小主要由网络设备的内外网口硬件,及程序算法的效率决定,尤其是程序算法,对于像防火墙系统这样需要进行大量运算的设备来说,算法的低效率会使通信量大打折扣。
因此,大多数防火墙虽号称100M防火墙,由于其算法依靠软件实现,通信量远远没有达到100M,实际只有10M-20M。纯硬件防火墙,由于采用硬件进行运算,因此吞吐量可以接近线速,达到90-95M,是真正的100M防火墙。