符合中小企业对网站设计、功能常规化式的企业展示型网站建设
本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...
商城网站建设因基本功能的需求不同费用上面也有很大的差别...
手机微信网站开发、微信官网、微信商城网站...
线性回归:
公司主营业务:成都网站设计、成都网站建设、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。成都创新互联是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。成都创新互联推出长泰免费做网站回馈大家。
设x,y分别为一组数据,代码如下
import matplotlib.pyplot as plt
import numpy as np
ro=np.polyfit(x,y,deg=1) #deg为拟合的多项式的次数(线性回归就选1)
ry=np.polyval(ro,x) #忘记x和ro哪个在前哪个在后了。。。
print ro #输出的第一个数是斜率k,第二个数是纵截距b
plt.scatter(x,y)
plt.plot(x,ry)
Python 逻辑回归求正系数的方法可以分为两种:
1. 使用线性模型的求解方法:可以使用sklearn中的LogisticRegression类来求解正系数,调用其中的fit()方法就可以求解出正系数。
2. 使用梯度下降法:可以自己实现梯度下降法,通过不断迭代更新正系数,最终获得最优的正系数。
这是一段用 Python 来实现 SVM 多元回归预测的代码示例:
# 导入相关库
from sklearn import datasets
from sklearn.svm import SVR
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
# 加载数据集
X, y = datasets.load_boston(return_X_y=True)
# 将数据集拆分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# 创建SVM多元回归模型
reg = SVR(C=1.0, epsilon=0.2)
# 训练模型
reg.fit(X_train, y_train)
# 预测结果
y_pred = reg.predict(X_test)
# 计算均方误差
mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error:", mse)
在这段代码中,首先导入了相关的库,包括 SVR 函数、train_test_split 函数和 mean_squared_error 函数。然后,使用 load_boston 函数加载数据集,并将数据集分为训练集和测试集。接着,使用 SVR 函数创建了一个 SVM 多元回归模型,并使用 fit 函数对模型进行训练。最后,使用 predict 函数进行预测,并使用 mean_squared_error 函数计算均方误差。
需要注意的是,这仅仅是一个示例代码,在实际应用中,可能需要根据项目的需求进行更改,例如使用不同的超参数