符合中小企业对网站设计、功能常规化式的企业展示型网站建设
本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...
商城网站建设因基本功能的需求不同费用上面也有很大的差别...
手机微信网站开发、微信官网、微信商城网站...
优雅的Golang Web开发框架:Martini
站在用户的角度思考问题,与客户深入沟通,找到连云网站设计与连云网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:网站建设、成都做网站、企业官网、英文网站、手机端网站、网站推广、域名注册、虚拟空间、企业邮箱。业务覆盖连云地区。
Martini 是一个非常新的 Go 语言的 Web 框架,使用 Go 的 net/http 借口开发,类似 Sinatra 或者 Flask 之类的框架,你可使用自己的 DB 层、会话管理和模板。
特性:
使用非常简单
无侵入设计
可与其他 Go 的包配合工作
超棒的路径匹配和路由
模块化设计,可轻松添加工具
大量很好的处理器和中间件
很棒的开箱即用特性
完全兼容 http.HandlerFunc 接口.
示例代码:
01 package main
02
03 import "github.com/codegangsta/martini"
04
05 func main() {
06 m := martini.Classic()
07 m.Get("/", func() string {
08 return "Hello world!"
09 })
10 m.Run()
11 }
请求处理器:
查看源码打印?
1 m.Get("/", func() {
2 println("hello world")
3 })
4
5 m.Get("/", func(res http.ResponseWriter, req *http.Request) { // res and req are injected by Martini
6 res.WriteHeader(200) // HTTP 200
7 })
1、服务器编程:以前你如果使用C或者C++做的那些事情,用Go来做很合适,例如处理日志、数据打包、虚拟机处理、文件系统等。
2、分布式系统、数据库代理器、中间件:例如Etcd。
3、网络编程:这一块目前应用最广,包括Web应用、API应用、下载应用,而且Go内置的net/http包基本上把我们平常用到的网络功能都实现了。
4、开发云平台:目前国外很多云平台在采用Go开发,我们所熟知的七牛云、华为云等等都有使用Go进行开发并且开源的成型的产品。
5、区块链:目前有一种说法,技术从业人员把Go语言称作为区块链行业的开发语言。如果大家学习区块链技术的话,就会发现现在有很多很多的区块链的系统和应用都是采用Go进行开发的,比如ehtereum是目前知名度最大的公链,再比如fabric是目前最知名的联盟链,两者都有go语言的版本,且go-ehtereum还是以太坊官方推荐的版本。
自1.0版发布以来,go语言引起了众多开发者的关注,并得到了广泛的应用。go语言简单、高效、并发的特点吸引了许多传统的语言开发人员,其数量也在不断增加。
使用 Go 语言开发的开源项目非常多。早期的 Go 语言开源项目只是通过 Go 语言与传统项目进行C语言库绑定实现,例如 Qt、Sqlite 等。
后期的很多项目都使用 Go 语言进行重新原生实现,这个过程相对于其他语言要简单一些,这也促成了大量使用 Go 语言原生开发项目的出现。
网关=反向代理+负载均衡+各种策略,技术实现也有多种多样,有基于 nginx 使用 lua 的实现,比如 openresty、kong;也有基于 zuul 的通用网关;还有就是 golang 的网关,比如 tyk。
这篇文章主要是讲如何基于 golang 实现一个简单的网关。
转自: troy.wang/docs/golang/posts/golang-gateway/
整理:go语言钟文文档:
启动两个后端 web 服务(代码)
这里使用命令行工具进行测试
具体代码
直接使用基础库 httputil 提供的NewSingleHostReverseProxy即可,返回的reverseProxy对象实现了serveHttp方法,因此可以直接作为 handler。
具体代码
director中定义回调函数,入参为*http.Request,决定如何构造向后端的请求,比如 host 是否向后传递,是否进行 url 重写,对于 header 的处理,后端 target 的选择等,都可以在这里完成。
director在这里具体做了:
modifyResponse中定义回调函数,入参为*http.Response,用于修改响应的信息,比如响应的 Body,响应的 Header 等信息。
最终依旧是返回一个ReverseProxy,然后将这个对象作为 handler 传入即可。
参考 2.2 中的NewSingleHostReverseProxy,只需要实现一个类似的、支持多 targets 的方法即可,具体实现见后面。
作为一个网关服务,在上面 2.3 的基础上,需要支持必要的负载均衡策略,比如:
随便 random 一个整数作为索引,然后取对应的地址即可,实现比较简单。
具体代码
使用curIndex进行累加计数,一旦超过 rss 数组的长度,则重置。
具体代码
轮询带权重,如果使用计数递减的方式,如果权重是5,1,1那么后端 rs 依次为a,a,a,a,a,b,c,a,a,a,a…,其中 a 后端会瞬间压力过大;参考 nginx 内部的加权轮询,或者应该称之为平滑加权轮询,思路是:
后端真实节点包含三个权重:
操作步骤:
具体代码
一致性 hash 算法,主要是用于分布式 cache 热点/命中问题;这里用于基于某 key 的 hash 值,路由到固定后端,但是只能是基本满足流量绑定,一旦后端目标节点故障,会自动平移到环上最近的那么个节点。
实现:
具体代码
每一种不同的负载均衡算法,只需要实现添加以及获取的接口即可。
然后使用工厂方法,根据传入的参数,决定使用哪种负载均衡策略。
具体代码
作为网关,中间件必不可少,这类包括请求响应的模式,一般称作洋葱模式,每一层都是中间件,一层层进去,然后一层层出来。
中间件的实现一般有两种,一种是使用数组,然后配合 index 计数;一种是链式调用。
具体代码
Java教程
Linux入门
更多
首页

Go语言WEB框架(Gin)详解
在 Go语言开发的 Web 框架中,有两款著名 Web 框架分别是 Martini 和 Gin,两款 Web 框架相比较的话,Gin 自己说它比 Martini 要强很多。
Gin 是 Go语言写的一个 web 框架,它具有运行速度快,分组的路由器,良好的崩溃捕获和错误处理,非常好的支持中间件和 json。总之在 Go语言开发领域是一款值得好好研究的 Web 框架,开源网址:
首先下载安装 gin 包:
go get -u github.com/gin-gonic/gin
一个简单的例子:
package main
import "github.com/gin-gonic/gin"
func main() {
//Default返回一个默认的路由引擎
r := gin.Default()
r.GET("/ping", func(c *gin.Context) {
//输出json结果给调用方
c.JSON(200, gin.H{
"message": "pong",
})
})
r.Run() // listen and serve on 0.0.0.0:8080
}
编译运行程序,打开浏览器,访问页面显示:
{"message":"pong"}
gin 的功能不只是简单输出 Json 数据。它是一个轻量级的 WEB 框架,支持 RestFull 风格 API,支持 GET,POST,PUT,PATCH,DELETE,OPTIONS 等 http 方法,支持文件上传,分组路由,Multipart/Urlencoded FORM,以及支持 JsonP,参数处理等等功能,这些都和 WEB 紧密相关,通过提供这些功能,使开发人员更方便地处理 WEB 业务。
Gin 实际应用
接下来使用 Gin 作为框架来搭建一个拥有静态资源站点,动态 WEB 站点,以及 RESTFull API 接口站点(可专门作为手机 APP 应用提供服务使用)组成的,亦可根据情况分拆这套系统,每种功能独立出来单独提供服务。
下面按照一套系统但采用分站点来说明,首先是整个系统的目录结构,website 目录下面 static 是资源类文件,为静态资源站点专用;photo 目录是 UGC 上传图片目录,tpl 是动态站点的模板。
当然这个目录结构是一种约定,可以根据情况来修改。整个项目已经开源,可以访问来详细了解:具体每个站点的功能怎么实现呢?请看下面有关每个功能的讲述:
静态资源站点
一般网站开发中,我们会考虑把 js,css,以及资源图片放在一起,作为静态站点部署在 CDN,提升响应速度。采用 Gin 实现起来非常简单,当然也可以使用 net/http 包轻松实现,但使用 Gin 会更方便。
不管怎么样,使用 Go 开发,我们可以不用花太多时间在 WEB 服务环境搭建上,程序启动就直接可以提供 WEB 服务了。
package main
import (
"net/http"
"github.com/gin-gonic/gin"
)
func main() {
router := gin.Default()
// 静态资源加载,本例为css,js以及资源图片
router.StaticFS("/public", http.Dir("D:/goproject/src/github.com/ffhelicopter/tmm/website/static"))
router.StaticFile("/favicon.ico", "./resources/favicon.ico")
// Listen and serve on 0.0.0.0:80
router.Run(":80")
}
首先需要是生成一个 Engine,这是 gin 的核心,默认带有 Logger 和 Recovery 两个中间件。
router := gin.Default()
StaticFile 是加载单个文件,而 StaticFS 是加载一个完整的目录资源:
func (group *RouterGroup) StaticFile(relativePath, filepath string) IRoutes
func (group *RouterGroup) StaticFS(relativePath string, fs http.FileSystem) IRoutes
这些目录下资源是可以随时更新,而不用重新启动程序。现在编译运行程序,静态站点就可以正常访问了。
1. 介绍
最近在研究一些消息中间件,常用的MQ如RabbitMQ,ActiveMQ,Kafka等。NSQ是一个基于Go语言的分布式实时消息平台,它基于MIT开源协议发布,由bitly公司开源出来的一款简单易用的消息中间件。
官方和第三方还为NSQ开发了众多客户端功能库,如官方提供的基于HTTP的nsqd、Go客户端go-nsq、Python客户端pynsq、基于Node.js的JavaScript客户端nsqjs、异步C客户端libnsq、Java客户端nsq-java以及基于各种语言的众多第三方客户端功能库。
1.1 Features
1). Distributed
NSQ提供了分布式的,去中心化,且没有单点故障的拓扑结构,稳定的消息传输发布保障,能够具有高容错和HA(高可用)特性。
2). Scalable易于扩展
NSQ支持水平扩展,没有中心化的brokers。内置的发现服务简化了在集群中增加节点。同时支持pub-sub和load-balanced 的消息分发。
3). Ops Friendly
NSQ非常容易配置和部署,生来就绑定了一个管理界面。二进制包没有运行时依赖。官方有Docker image。
4.Integrated高度集成
官方的 Go 和 Python库都有提供。而且为大多数语言提供了库。
1.2 组件
1.3 拓扑结构
NSQ推荐通过他们相应的nsqd实例使用协同定位发布者,这意味着即使面对网络分区,消息也会被保存在本地,直到它们被一个消费者读取。更重要的是,发布者不必去发现其他的nsqd节点,他们总是可以向本地实例发布消息。
NSQ
首先,一个发布者向它的本地nsqd发送消息,要做到这点,首先要先打开一个连接,然后发送一个包含topic和消息主体的发布命令,在这种情况下,我们将消息发布到事件topic上以分散到我们不同的worker中。
事件topic会复制这些消息并且在每一个连接topic的channel上进行排队,在我们的案例中,有三个channel,它们其中之一作为档案channel。消费者会获取这些消息并且上传到S3。
nsqd
每个channel的消息都会进行排队,直到一个worker把他们消费,如果此队列超出了内存限制,消息将会被写入到磁盘中。Nsqd节点首先会向nsqlookup广播他们的位置信息,一旦它们注册成功,worker将会从nsqlookup服务器节点上发现所有包含事件topic的nsqd节点。
nsqlookupd
2. Internals
2.1 消息传递担保
1)客户表示已经准备好接收消息
2)NSQ 发送一条消息,并暂时将数据存储在本地(在 re-queue 或 timeout)
3)客户端回复 FIN(结束)或 REQ(重新排队)分别指示成功或失败。如果客户端没有回复, NSQ 会在设定的时间超时,自动重新排队消息
这确保了消息丢失唯一可能的情况是不正常结束 nsqd 进程。在这种情况下,这是在内存中的任何信息(或任何缓冲未刷新到磁盘)都将丢失。
如何防止消息丢失是最重要的,即使是这个意外情况可以得到缓解。一种解决方案是构成冗余 nsqd对(在不同的主机上)接收消息的相同部分的副本。因为你实现的消费者是幂等的,以两倍时间处理这些消息不会对下游造成影响,并使得系统能够承受任何单一节点故障而不会丢失信息。
2.2 简化配置和管理
单个 nsqd 实例被设计成可以同时处理多个数据流。流被称为“话题”和话题有 1 个或多个“通道”。每个通道都接收到一个话题中所有消息的拷贝。在实践中,一个通道映射到下行服务消费一个话题。
在更底的层面,每个 nsqd 有一个与 nsqlookupd 的长期 TCP 连接,定期推动其状态。这个数据被 nsqlookupd 用于给消费者通知 nsqd 地址。对于消费者来说,一个暴露的 HTTP /lookup 接口用于轮询。为话题引入一个新的消费者,只需启动一个配置了 nsqlookup 实例地址的 NSQ 客户端。无需为添加任何新的消费者或生产者更改配置,大大降低了开销和复杂性。
2.3 消除单点故障
NSQ被设计以分布的方式被使用。nsqd 客户端(通过 TCP )连接到指定话题的所有生产者实例。没有中间人,没有消息代理,也没有单点故障。
这种拓扑结构消除单链,聚合,反馈。相反,你的消费者直接访问所有生产者。从技术上讲,哪个客户端连接到哪个 NSQ 不重要,只要有足够的消费者连接到所有生产者,以满足大量的消息,保证所有东西最终将被处理。对于 nsqlookupd,高可用性是通过运行多个实例来实现。他们不直接相互通信和数据被认为是最终一致。消费者轮询所有的配置的 nsqlookupd 实例和合并 response。失败的,无法访问的,或以其他方式故障的节点不会让系统陷于停顿。
2.4 效率
对于数据的协议,通过推送数据到客户端最大限度地提高性能和吞吐量的,而不是等待客户端拉数据。这个概念,称之为 RDY 状态,基本上是客户端流量控制的一种形式。
efficiency
2.5 心跳和超时
组合应用级别的心跳和 RDY 状态,避免头阻塞现象,也可能使心跳无用(即,如果消费者是在后面的处理消息流的接收缓冲区中,操作系统将被填满,堵心跳)为了保证进度,所有的网络 IO 时间上限势必与配置的心跳间隔相关联。这意味着,你可以从字面上拔掉之间的网络连接 nsqd 和消费者,它会检测并正确处理错误。当检测到一个致命错误,客户端连接被强制关闭。在传输中的消息会超时而重新排队等待传递到另一个消费者。最后,错误会被记录并累计到各种内部指标。
2.6 分布式
因为NSQ没有在守护程序之间共享信息,所以它从一开始就是为了分布式操作而生。个别的机器可以随便宕机随便启动而不会影响到系统的其余部分,消息发布者可以在本地发布,即使面对网络分区。
这种“分布式优先”的设计理念意味着NSQ基本上可以永远不断地扩展,需要更高的吞吐量?那就添加更多的nsqd吧。唯一的共享状态就是保存在lookup节点上,甚至它们不需要全局视图,配置某些nsqd注册到某些lookup节点上这是很简单的配置,唯一关键的地方就是消费者可以通过lookup节点获取所有完整的节点集。清晰的故障事件——NSQ在组件内建立了一套明确关于可能导致故障的的故障权衡机制,这对消息传递和恢复都有意义。虽然它们可能不像Kafka系统那样提供严格的保证级别,但NSQ简单的操作使故障情况非常明显。
2.7 no replication
不像其他的队列组件,NSQ并没有提供任何形式的复制和集群,也正是这点让它能够如此简单地运行,但它确实对于一些高保证性高可靠性的消息发布没有足够的保证。我们可以通过降低文件同步的时间来部分避免,只需通过一个标志配置,通过EBS支持我们的队列。但是这样仍然存在一个消息被发布后马上死亡,丢失了有效的写入的情况。
2.8 没有严格的顺序
虽然Kafka由一个有序的日志构成,但NSQ不是。消息可以在任何时间以任何顺序进入队列。在我们使用的案例中,这通常没有关系,因为所有的数据都被加上了时间戳,但它并不适合需要严格顺序的情况。
2.9 无数据重复删除功能
NSQ对于超时系统,它使用了心跳检测机制去测试消费者是否存活还是死亡。很多原因会导致我们的consumer无法完成心跳检测,所以在consumer中必须有一个单独的步骤确保幂等性。
3. 实践安装过程
本文将nsq集群具体的安装过程略去,大家可以自行参考官网,比较简单。这部分介绍下笔者实验的拓扑,以及nsqadmin的相关信息。
3.1 拓扑结构
topology
实验采用3台NSQD服务,2台LOOKUPD服务。
采用官方推荐的拓扑,消息发布的服务和NSQD在一台主机。一共5台机器。
NSQ基本没有配置文件,配置通过命令行指定参数。
主要命令如下:
LOOKUPD命令
NSQD命令
工具类,消费后存储到本地文件。
发布一条消息
3.2 nsqadmin
对Streams的详细信息进行查看,包括NSQD节点,具体的channel,队列中的消息数,连接数等信息。
nsqadmin
channel
列出所有的NSQD节点:
nodes
消息的统计:
msgs
lookup主机的列表:
hosts
4. 总结
NSQ基本核心就是简单性,是一个简单的队列,这意味着它很容易进行故障推理和很容易发现bug。消费者可以自行处理故障事件而不会影响系统剩下的其余部分。
事实上,简单性是我们决定使用NSQ的首要因素,这方便与我们的许多其他软件一起维护,通过引入队列使我们得到了堪称完美的表现,通过队列甚至让我们增加了几个数量级的吞吐量。越来越多的consumer需要一套严格可靠性和顺序性保障,这已经超过了NSQ提供的简单功能。
结合我们的业务系统来看,对于我们所需要传输的发票消息,相对比较敏感,无法容忍某个nsqd宕机,或者磁盘无法使用的情况,该节点堆积的消息无法找回。这是我们没有选择该消息中间件的主要原因。简单性和可靠性似乎并不能完全满足。相比Kafka,ops肩负起更多负责的运营。另一方面,它拥有一个可复制的、有序的日志可以提供给我们更好的服务。但对于其他适合NSQ的consumer,它为我们服务的相当好,我们期待着继续巩固它的坚实的基础。