符合中小企业对网站设计、功能常规化式的企业展示型网站建设
本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...
商城网站建设因基本功能的需求不同费用上面也有很大的差别...
手机微信网站开发、微信官网、微信商城网站...
可以的。 python利用matplotlib这个库,先定义一个空图层,然后声明x,y,z的值,x,y,z赋相应的列的值,最后建立标签,标题即可。最后,excel安装运行python的插件,运行python。
成都创新互联专注于巴彦企业网站建设,响应式网站设计,商城网站定制开发。巴彦网站建设公司,为巴彦等地区提供建站服务。全流程按需策划设计,专业设计,全程项目跟踪,成都创新互联专业和态度为您提供的服务
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
X = [1, 1, 2, 2]
Y = [3, 4, 4, 3]
Z = [1, 2, 1, 1]
ax.plot_trisurf(X, Y, Z)
plt.show()
需求:根据已有的多个列表,利用numpy.array()函数创建三维以上数组
格式概述: 每一维用一个 [] 括起,不同维之间用 , 逗号间隔,最后总体再用 [] 括起!!!
说明 :列表肯定是一维的,多个列表一行一行堆叠形成二维,多个这样的二维构成三维,以此类推可得更高维矩阵(一般3维以上就不用numpy.array()这种方法创建了)。
注意 :高维数组,以三维(5,2,3)为例:前面的5代表页数,即表示(2,3)这样的二维矩阵有5个。即: 前面的数,永远代表比它"低一维"的数组有多少个 !
(1)创建二维数组的例子:
(2)创建三维数组的例子1:(2,3,3)
(3)创建三维数组的例子2:(4,2,3)
补充:最快验证自己创建的数组是否满足自己的维度需求的方式,就是看打印的结果中, 最外面有几个 ] 中括号,有几个 ] 就是几维数组 !如本文中第3个例子,打印结果最外层有3个 ],说明满足3维的要求。
1、创建一般的多维数组
import numpy as np
a = np.array([1,2,3], dtype=int) # 创建1*3维数组 array([1,2,3])
type(a) # numpy.ndarray类型
a.shape # 维数信息(3L,)
a.dtype.name # 'int32'
a.size # 元素个数:3
a.itemsize #每个元素所占用的字节数目:4
b=np.array([[1,2,3],[4,5,6]],dtype=int) # 创建2*3维数组 array([[1,2,3],[4,5,6]])
b.shape # 维数信息(2L,3L)
b.size # 元素个数:6
b.itemsize # 每个元素所占用的字节数目:4
c=np.array([[1,2,3],[4,5,6]],dtype='int16') # 创建2*3维数组 array([[1,2,3],[4,5,6]],dtype=int16)
c.shape # 维数信息(2L,3L)
c.size # 元素个数:6
c.itemsize # 每个元素所占用的字节数目:2
c.ndim # 维数
d=np.array([[1,2,3],[4,5,6]],dtype=complex) # 复数二维数组
d.itemsize # 每个元素所占用的字节数目:16
d.dtype.name # 元素类型:'complex128'
2、创建一般的多维数组
import numpy as np
a = np.array([1,2,3], dtype=int) # 创建1*3维数组 array([1,2,3])
type(a) # numpy.ndarray类型
a.shape # 维数信息(3L,)
a.dtype.name # 'int32'
a.size # 元素个数:3
a.itemsize #每个元素所占用的字节数目:4
b=np.array([[1,2,3],[4,5,6]],dtype=int) # 创建2*3维数组 array([[1,2,3],[4,5,6]])
b.shape # 维数信息(2L,3L)
b.size # 元素个数:6
b.itemsize # 每个元素所占用的字节数目:4
c=np.array([[1,2,3],[4,5,6]],dtype='int16') # 创建2*3维数组 array([[1,2,3],[4,5,6]],dtype=int16)
c.shape # 维数信息(2L,3L)
c.size # 元素个数:6
c.itemsize # 每个元素所占用的字节数目:2
c.ndim # 维数
d=np.array([[1,2,3],[4,5,6]],dtype=complex) # 复数二维数组
d.itemsize # 每个元素所占用的字节数目:16
d.dtype.name # 元素类型:'complex128'
3、创建特殊类型的多维数组
a1 = np.zeros((3,4)) # 创建3*4全零二维数组
输出:
array([[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]])
a1.dtype.name # 元素类型:'float64'
a1.size # 元素个数:12
a1.itemsize # 每个元素所占用的字节个数:8
a2 = np.ones((2,3,4), dtype=np.int16) # 创建2*3*4全1三维数组
a2 = np.ones((2,3,4), dtype='int16') # 创建2*3*4全1三维数组
输出:
array([[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]],
[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]]], dtype=int16)
a3 = np.empty((2,3)) # 创建2*3的未初始化二维数组
输出:(may vary)
array([[ 1., 2., 3.],
[ 4., 5., 6.]])
a4 = np.arange(10,30,5) # 初始值10,结束值:30(不包含),步长:5
输出:array([10, 15, 20, 25])
a5 = np.arange(0,2,0.3) # 初始值0,结束值:2(不包含),步长:0.2
输出:array([ 0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])
from numpy import pi
np.linspace(0, 2, 9) # 初始值0,结束值:2(包含),元素个数:9
输出:
array([ 0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. ])
x = np.linspace(0, 2*pi, 9)
输出:
array([ 0. , 0.78539816, 1.57079633, 2.35619449, 3.14159265,
3.92699082, 4.71238898, 5.49778714, 6.28318531])
a = np.arange(6)
输出:
array([0, 1, 2, 3, 4, 5])
b = np.arange(12).reshape(4,3)
输出:
array([[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 9, 10, 11]])
c = np.arange(24).reshape(2,3,4)
输出:
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
使用numpy.set_printoptions可以设置numpy变量的打印格式
在ipython环境下,使用help(numpy.set_printoptions)查询使用帮助和示例
4、多维数组的基本操作
加法和减法操作要求操作双方的维数信息一致,均为M*N为数组方可正确执行操作。
a = np.arange(4)
输出:
array([0, 1, 2, 3])
b = a**2
输出:
array([0, 1, 4, 9])
c = 10*np.sin(a)
输出:
array([ 0. , 8.41470985, 9.09297427, 1.41120008])
n 35
输出:
array([ True, True, True, True], dtype=bool)
A = np.array([[1,1],[0,1]])
B = np.array([[2,0],[3,4]])
C = A * B # 元素点乘
输出:
array([[2, 0],
[0, 4]])
D = A.dot(B) # 矩阵乘法
输出:
array([[5, 4],
[3, 4]])
E = np.dot(A,B) # 矩阵乘法
输出:
array([[5, 4],
[3, 4]])
多维数组操作过程中的类型转换
When operating with arrays of different types, the type of the
resulting array corresponds to the more general or precise one (a
behavior known as upcasting)
即操作不同类型的多维数组时,结果自动转换为精度更高类型的数组,即upcasting
数组索引、切片和迭代
a = np.ones((2,3),dtype=int) # int32
b = np.random.random((2,3)) # float64
b += a # 正确
a += b # 错误
a = np.ones(3,dtype=np.int32)
b = np.linspace(0,pi,3)
c = a + b
d = np.exp(c*1j)
输出:
array([ 0.54030231+0.84147098j, -0.84147098+0.54030231j,
-0.54030231-0.84147098j])
d.dtype.name
输出:
'complex128'
多维数组的一元操作,如求和、求最小值、最大值等
a = np.random.random((2,3))
a.sum()
a.min()
a.max()
b = np.arange(12).reshape(3,4)
输出:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
b.sum(axis=0) # 按列求和
输出:
array([12, 15, 18, 21])
b.sum(axis=1) # 按行求和
输出:
array([ 6, 22, 38])
b.cumsum(axis=0) # 按列进行元素累加
输出:
array([[ 0, 1, 2, 3],
[ 4, 6, 8, 10],
[12, 15, 18, 21]])
b.cumsum(axis=1) # 按行进行元素累加
输出:
array([[ 0, 1, 3, 6],
[ 4, 9, 15, 22],
[ 8, 17, 27, 38]])
universal functions
B = np.arange(3)
np.exp(B)
np.sqrt(B)
C = np.array([2.,-1.,4.])
np.add(B,C)
其他的ufunc函数包括:
all, any, apply_along_axis, argmax, argmin, argsort, average, bincount, ceil, clip, conj, corrcoef, cov, cross, cumprod, cumsum, diff, dot, floor,inner, lexsort, max, maximum, mean, median, min, minimum, nonzero, outer, prod, re, round, sort, std, sum, trace, transpose, var,vdot, vectorize, where
5. 数组索引、切片和迭代
a = np.arange(10)**3
a[2]
a[2:5]
a[::-1] # 逆序输出
for i in a:
print (i**(1/3.))
def f(x,y):
return 10*x+y
b = np.fromfunction(f,(5,4),dtype=int)
b[2,3]
b[0:5,1]
b[:,1]
b[1:3,:]
b[-1]
c = np.array([[[0,1,2],[10,11,12]],[[100,101,102],[110,111,112]]])
输出:
array([[[ 0, 1, 2],
[ 10, 11, 12]],
[[100, 101, 102],
[110, 111, 112]]])
c.shape
输出:
(2L, 2L, 3L)
c[0,...]
c[0,:,:]
输出:
array([[ 0, 1, 2],
[10, 11, 12]])
c[:,:,2]
c[...,2]
输出:
array([[ 2, 12],
[102, 112]])
for row in c:
print(row)
for element in c.flat:
print(element)
a = np.floor(10*np.random.random((3,4)))
输出:
array([[ 3., 9., 8., 4.],
[ 2., 1., 4., 6.],
[ 0., 6., 0., 2.]])
a.ravel()
输出:
array([ 3., 9., 8., ..., 6., 0., 2.])
a.reshape(6,2)
输出:
array([[ 3., 9.],
[ 8., 4.],
[ 2., 1.],
[ 4., 6.],
[ 0., 6.],
[ 0., 2.]])
a.T
输出:
array([[ 3., 2., 0.],
[ 9., 1., 6.],
[ 8., 4., 0.],
[ 4., 6., 2.]])
a.T.shape
输出:
(4L, 3L)
a.resize((2,6))
输出:
array([[ 3., 9., 8., 4., 2., 1.],
[ 4., 6., 0., 6., 0., 2.]])
a.shape
输出:
(2L, 6L)
a.reshape(3,-1)
输出:
array([[ 3., 9., 8., 4.],
[ 2., 1., 4., 6.],
[ 0., 6., 0., 2.]])
详查以下函数:
ndarray.shape, reshape, resize, ravel
6. 组合不同的多维数组
a = np.floor(10*np.random.random((2,2)))
输出:
array([[ 5., 2.],
[ 6., 2.]])
b = np.floor(10*np.random.random((2,2)))
输出:
array([[ 0., 2.],
[ 4., 1.]])
np.vstack((a,b))
输出:
array([[ 5., 2.],
[ 6., 2.],
[ 0., 2.],
[ 4., 1.]])
np.hstack((a,b))
输出:
array([[ 5., 2., 0., 2.],
[ 6., 2., 4., 1.]])
from numpy import newaxis
np.column_stack((a,b))
输出:
array([[ 5., 2., 0., 2.],
[ 6., 2., 4., 1.]])
a = np.array([4.,2.])
b = np.array([2.,8.])
a[:,newaxis]
输出:
array([[ 4.],
[ 2.]])
b[:,newaxis]
输出:
array([[ 2.],
[ 8.]])
np.column_stack((a[:,newaxis],b[:,newaxis]))
输出:
array([[ 4., 2.],
[ 2., 8.]])
np.vstack((a[:,newaxis],b[:,newaxis]))
输出:
array([[ 4.],
[ 2.],
[ 2.],
[ 8.]])
np.r_[1:4,0,4]
输出:
array([1, 2, 3, 0, 4])
np.c_[np.array([[1,2,3]]),0,0,0,np.array([[4,5,6]])]
输出:
array([[1, 2, 3, 0, 0, 0, 4, 5, 6]])
详细使用请查询以下函数:
hstack, vstack, column_stack, concatenate, c_, r_
7. 将较大的多维数组分割成较小的多维数组
a = np.floor(10*np.random.random((2,12)))
输出:
array([[ 9., 7., 9., ..., 3., 2., 4.],
[ 5., 3., 3., ..., 9., 7., 7.]])
np.hsplit(a,3)
输出:
[array([[ 9., 7., 9., 6.],
[ 5., 3., 3., 1.]]), array([[ 7., 2., 1., 6.],
[ 7., 5., 0., 2.]]), array([[ 9., 3., 2., 4.],
[ 3., 9., 7., 7.]])]
np.hsplit(a,(3,4))
输出:
[array([[ 9., 7., 9.],
[ 5., 3., 3.]]), array([[ 6.],
[ 1.]]), array([[ 7., 2., 1., ..., 3., 2., 4.],
[ 7., 5., 0., ..., 9., 7., 7.]])]
实现类似功能的函数包括:
hsplit,vsplit,array_split
8. 多维数组的复制操作
a = np.arange(12)
输出:
array([ 0, 1, 2, ..., 9, 10, 11])
not copy at all
b = a
b is a # True
b.shape = 3,4
a.shape # (3L,4L)
def f(x) # Python passes mutable objects as references, so function calls make no copy.
print(id(x)) # id是python对象的唯一标识符
id(a) # 111833936L
id(b) # 111833936L
f(a) # 111833936L
浅复制
c = a.view()
c is a # False
c.base is a # True
c.flags.owndata # False
c.shape = 2,6
a.shape # (3L,4L)
c[0,4] = 1234
print(a)
输出:
array([[ 0, 1, 2, 3],
[1234, 5, 6, 7],
[ 8, 9, 10, 11]])
s = a[:,1:3]
s[:] = 10
print(a)
输出:
array([[ 0, 10, 10, 3],
[1234, 10, 10, 7],
[ 8, 10, 10, 11]])
深复制
d = a.copy()
d is a # False
d.base is a # False
d[0,0] = 9999
print(a)
输出:
array([[ 0, 10, 10, 3],
[1234, 10, 10, 7],
[ 8, 10, 10, 11]])
numpy基本函数和方法一览
Array Creation
arange, array, copy, empty, empty_like, eye, fromfile, fromfunction, identity, linspace, logspace, mgrid, ogrid, ones, ones_like, r, zeros,zeros_like
Conversions
ndarray.astype, atleast_1d, atleast_2d, atleast_3d, mat
Manipulations
array_split, column_stack, concatenate, diagonal, dsplit, dstack, hsplit, hstack, ndarray.item, newaxis, ravel, repeat, reshape, resize,squeeze, swapaxes, take, transpose, vsplit, vstack
Questionsall, any, nonzero, where
Ordering
argmax, argmin, argsort, max, min, ptp, searchsorted, sort
Operations
choose, compress, cumprod, cumsum, inner, ndarray.fill, imag, prod, put, putmask, real, sum
Basic Statistics
cov, mean, std, var
Basic Linear Algebra
cross, dot, outer, linalg.svd, vdot
完整的函数和方法一览表链接:
3D图形在数据分析、数据建模、图形和图像处理等领域中都有着广泛的应用,下面将给大家介绍一下如何在Python中使用 matplotlib进行3D图形的绘制,包括3D散点、3D表面、3D轮廓、3D直线(曲线)以及3D文字等的绘制。
准备工作:
python中绘制3D图形,依旧使用常用的绘图模块matplotlib,但需要安装mpl_toolkits工具包,安装方法如下:windows命令行进入到python安装目录下的Scripts文件夹下,执行: pip install --upgrade matplotlib即可;Linux环境下直接执行该命令。
安装好这个模块后,即可调用mpl_tookits下的mplot3d类进行3D图形的绘制。
下面以实例进行说明。
1、3D表面形状的绘制
这段代码是绘制一个3D的椭球表面,结果如下:
2、3D直线(曲线)的绘制
这段代码用于绘制一个螺旋状3D曲线,结果如下:
3、绘制3D轮廓
绘制结果如下:
相关推荐:《Python视频教程》
4、绘制3D直方图
绘制结果如下:
5、绘制3D网状线
绘制结果如下:
6、绘制3D三角面片图
绘制结果如下:
7、绘制3D散点图
绘制结果如下:
1. 绘制3D曲面图
from matplotlib import pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
fig=plt.figure()
ax=Axes3D(fig)
x=np.arange(-4,4,0.25)
y=np.arange(-4,4,0.25)
x,y=np.meshgrid(x,y)
r=np.sqrt(x**2, y**2)
z=np.sin(r)
//绘面函数
ax.plot_surface(x,y,z,rstride=1,cstride=1,cmap=“rainbow”
plt.show()
2.绘制三维的散点图(表述一些数据点分布)
4a.mat数据地址:http blog.csdn.net/eddy_zhang/article/details/50496164
from matplotlib import pyplot as plt
import scipy.io as sio
from mpl_toolkits.mplot3d import Axes3D
matl=‘4a.mat’
data=sio.loadmat(matl)
m=data[‘data’]
x,y,z=m[0],m[1],m[2]
//创建一个绘图工程
ax=plt.subplot(111,project=‘3D’)
//将数据点分成三部分画,在颜色上有区分度
ax.scatter(x[:1000], y[:1000], z[:1000],c=‘y’ )//绘制数据点
ax.scatter(x[1000:4000], y[1000:4000], z[1000:4000],c=‘r’ )//绘制数据点
ax.scatter(x[4000:], y[4000:], z[4000:],c=‘g’ )//绘制数据点
ax.set_zlable(‘z’)//坐标轴
ax.set_ylable(‘y’)//坐标轴
ax.set_xlable(‘x’)
plt.show()