符合中小企业对网站设计、功能常规化式的企业展示型网站建设
本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...
商城网站建设因基本功能的需求不同费用上面也有很大的差别...
手机微信网站开发、微信官网、微信商城网站...
不写出y=f(x)这样的表达式,由隐函数的等式直接绘制图像,以x²+y²+xy=1的图像为例,使用sympy间接调用matplotlib工具的代码和该二次曲线图像如下(注意python里的乘幂符号是**而不是^,还有,python的sympy工具箱的等式不是a==b,而是a-b或者Eq(a,b),这几点和matlab的区别很大)
创新互联-专业网站定制、快速模板网站建设、高性价比昔阳网站开发、企业建站全套包干低至880元,成熟完善的模板库,直接使用。一站式昔阳网站制作公司更省心,省钱,快速模板网站建设找我们,业务覆盖昔阳地区。费用合理售后完善,十多年实体公司更值得信赖。
直接在命令提示行的里面运行代码的效果
from sympy import *;
x,y=symbols('x y');
plotting.plot_implicit(x**2+y**2+x*y-1);
1、plt.legendplt.legend(loc=0)#显示图例的位置。
2、plt.figureplt.figure(figsize=(14,6),dpi=80)#设置绘图区域的大小和像素。
3、plt.xticksplt.xticks(new_year)#设置x轴的刻度线为new_year,new_year可以为数组。
4、plt.xlabelplt.xlabel('year')#x轴标签。
5、plt.plotplt.plot(number,color='blue',label="actualvalue")#将实际值的折线设置为蓝色。
6、两个图分开fig,axes=plt.subplots(2,1,sharex=True,figsize=(10,10))。
7、画竖直线plt.axvline(99,linestyle="dotted",linewidth=4,color='r')#99表示横坐标。
8、图片保存plt.savefig('timeseries_y.jpg')。
为避免中文显示出错,需导入matplotlib.pylab库
1.2.1 确定数据
1.2.2 创建画布
1.2.3 添加标题
1.2.4 添加x,y轴名称
1.2.5 添加x,y轴范围
1.2.6 添加x,y轴刻度
1.2.7 绘制曲线、图例, 并保存图片
保存图片时,dpi为清晰度,数值越高越清晰。请注意,函数结尾处,必须加plt.show(),不然图像不显示。
绘制流程与绘制不含子图的图像一致,只需注意一点:创建画布。
合理调整figsize、dpi,可避免出现第一幅图横轴名称与第二幅图标题相互遮盖的现象.
2.2.1 rc参数类型
2.2.2 方法1:使用rcParams设置
2.2.3 方法2:plot内设置
2.2.4 方法3:plot内简化设置
方法2中,线条形状,linestyle可简写为ls;线条宽度,linewidth可简写为lw;线条颜色,color可简写为c,等等。
一、函数说明
在使用python作图时,应用最广的就是matplotlib包,但我们平时使用matplotlib时主要是画一些简单的图表,很少有涉及分段函数。本次针对数值实验中两个较为复杂的函数,使用其构建分段函数图像。
二、图像代码
2.11、函数公式:
y=4sin(4πt)-sgn(t-0.3)-sgn(0.72-t)
2.12、代码如下:
import numpy as np
import matplotlib.pyplot as plt
def sgn(x):
if x0:
return 1
elif x0:
return -1
else:
return 0
t=np.arange(0,1,0.01)
y=[]
for i in t:
y_1=4*np.sin(4*np.pi*i)-sgn(i-0.3)-sgn(0.72-i)
y.append(y_1)
plt.plot(t,y)
plt.xlabel("t")
plt.ylabel("y")
plt.title("Heavsine")
plt.show()
2.13、运行结果如下:
81036331d721706ae12808beb99b9574.png
2.21、函数公式:
479029.html
2.22、代码如下:
import numpy as np
import matplotlib.pyplot as plt
def g(x):
if x0:
return x
else:
return 0
t=np.arange(0,1,0.01)
y=[]
for i in t:
y_1=g(i*(1-i))*np.sin((2*np.pi*1.05)/(i+0.05))
y.append(y_1)
plt.plot(t,y)
plt.xlabel("t")
plt.ylabel("y")
plt.title("TimeSine")
plt.show()