符合中小企业对网站设计、功能常规化式的企业展示型网站建设
本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...
商城网站建设因基本功能的需求不同费用上面也有很大的差别...
手机微信网站开发、微信官网、微信商城网站...
作者 natrium 一 理解多线程多线程是这样一种机制 它允许在程序中并发执行多个指令流 每个指令流都称为一个线程 彼此间互相独立 线程又称为轻量级进程 它和进程一样拥有独立的执行控制 由操作系统负责调度 区别在于线程没有独立的存储空间 而是和所属进程中的其它线程共享一个存储空间 这使得线程间的通信远较进程简单 多个线程的执行是并发的 也就是在逻辑上 同时 而不管是否是物理上的 同时 如果系统只有一个CPU 那么真正的 同时 是不可能的 但是由于CPU的速度非常快 用户感觉不到其中的区别 因此我们也不用关心它 只需要设想各个线程是同时执行即可 多线程和传统的单线程在程序设计上最大的区别在于 由于各个线程的控制流彼此独立 使得各个线程之间的代码是乱序执行的 由此带来的线程调度 同步等问题 将在以后探讨 二 在Java中实现多线程我们不妨设想 为了创建一个新的线程 我们需要做些什么?很显然 我们必须指明这个线程所要执行的代码 而这就是在Java中实现多线程我们所需要做的一切!真是神奇!Java是如何做到这一点的?通过类!作为一个完全面向对象的语言 Java提供了类 java lang Thread 来方便多线程编程 这个类提供了大量的方法来方便我们控制自己的各个线程 我们以后的讨论都将围绕这个类进行 那么如何提供给 Java 我们要线程执行的代码呢?让我们来看一看 Thread 类 Thread 类最重要的方法是 run() 它为Thread 类的方法 start() 所调用 提供我们的线程所要执行的代码 为了指定我们自己的代码 只需要覆盖它!方法一 继承 Thread 类 覆盖方法 run() 我们在创建的 Thread 类的子类中重写 run() 加入线程所要执行的代码即可 下面是一个例子 public class MyThread extends Thread {int count= number;public MyThread(int num) {number = num;System out println( 创建线程 + number);}public void run() {while(true) {System out println( 线程 + number + :计数 + count);if(++count== ) return;}}public static void main(String args[]) {for(int i = ; i 5; i++) new MyThread(i+1).start();}}这种方法简单明了,符合大家的习惯,但是,它也有一个很大的缺点,那就是如果我们的类已经从一个类继承(如小程序必须继承自 Applet 类),则无法再继承 Thread 类,这时如果我们又不想建立一个新的类,应该怎么办呢?我们不妨来探索一种新的方法:我们不创建 Thread 类的子类,而是直接使用它,那么我们只能将我们的方法作为参数传递给 Thread 类的实例,有点类似回调函数。.WINgWIT.但是 Java 没有指针,我们只能传递一个包含这个方法的类的实例。那么如何限制这个类必须包含这一方法呢?当然是使用接口!(虽然抽象类也可满足,但是需要继承,而我们之所以要采用这种新方法,不就是为了避免继承带来的限制吗?)Java 提供了接口 java.lang.Runnable 来支持这种方法。方法二:实现 Runnable 接口Runnable 接口只有一个方法 run(),我们声明自己的类实现 Runnable 接口并提供这一方法,将我们的线程代码写入其中,就完成了这一部分的任务。但是 Runnable 接口并没有任何对线程的支持,我们还必须创建 Thread 类的实例,这一点通过 Thread 类的构造函数public Thread(Runnable target);来实现。下面是一个例子:public class MyThread implements Runnable {int count= 1, number;public MyThread(int num) {number = num;System.out.println("创建线程 " + number);}public void run() {while(true) {System.out.println("线程 " + number + ":计数 " + count);if(++count== 6) return;} }public static void main(String args[]) {for(int i = 0; i 5; i++) new Thread(new MyThread(i+1)).start();}}严格地说,创建 Thread 子类的实例也是可行的,但是必须注意的是,该子类必须没有覆盖 Thread 类的 run 方法,否则该线程执行的将是子类的 run 方法,而不是我们用以实现Runnable 接口的类的 run 方法,对此大家不妨试验一下。使用 Runnable 接口来实现多线程使得我们能够在一个类中包容所有的代码,有利于封装,它的缺点在于,我们只能使用一套代码,若想创建多个线程并使各个线程执行不同的代码,则仍必须额外创建类,如果这样的话,在大多数情况下也许还不如直接用多个类分别继承 Thread 来得紧凑。综上所述,两种方法各有千秋,大家可以灵活运用。下面让我们一起来研究一下多线程使用中的一些问题。三:线程的四种状态1. 新状态:线程已被创建但尚未执行(start() 尚未被调用)。2. 可执行状态:线程可以执行,虽然不一定正在执行。CPU 时间随时可能被分配给该线程,从而使得它执行。3. 死亡状态:正常情况下 run() 返回使得线程死亡。调用 stop()或 destroy() 亦有同样效果,但是不被推荐,前者会产生异常,后者是强制终止,不会释放锁。4. 阻塞状态:线程不会被分配 CPU 时间,无法执行。四:线程的优先级 线程的优先级代表该线程的重要程度,当有多个线程同时处于可执行状态并等待获得 CPU 时间时,线程调度系统根据各个线程的优先级来决定给谁分配 CPU 时间,优先级高的线程有更大的机会获得 CPU 时间,优先级低的线程也不是没有机会,只是机会要小一些罢了。你可以调用 Thread 类的方法 getPriority() 和 setPriority()来存取线程的优先级,线程的优先级界于1(MIN_PRIORITY)和10(MAX_PRIORITY)之间,缺省是5(NORM_PRIORITY)。五:线程的同步由于同一进程的多个线程共享同一片存储空间,在带来方便的同时,也带来了访问冲突这个严重的问题。Java语言提供了专门机制以解决这种冲突,有效避免了同一个数据对象被多个线程同时访问。由于我们可以通过 private 关键字来保证数据对象只能被方法访问,所以我们只需针对方法提出一套机制,这套机制就是 synchronized 关键字,它包括两种用法:synchronized 方法和 synchronized 块。1. synchronized 方法:通过在方法声明中加入 synchronized关键字来声明 synchronized 方法。如:public synchronized void accessVal(int newVal);synchronized 方法控制对类成员变量的访问:每个类实例对应一把锁,每个 synchronized 方法都必须获得调用该方法的类实例的锁方能执行,否则所属线程阻塞,方法一旦执行,就独占该锁,直到从该方法返回时才将锁释放,此后被阻塞的线程方能获得该锁,重新进入可执行状态。这种机制确保了同一时刻对于每一个类实例,其所有声明为 synchronized 的成员函数中至多只有一个处于可执行状态(因为至多只有一个能够获得该类实例对应的锁),从而有效避免了类成员变量的访问冲突(只要所有可能访问类成员变量的方法均被声明为 synchronized)。在 Java 中,不光是类实例,每一个类也对应一把锁,这样我们也可将类的静态成员函数声明为 synchronized ,以控制其对类的静态成员变量的访问。synchronized 方法的缺陷:若将一个大的方法声明为synchronized 将会大大影响效率,典型地,若将线程类的方法 run() 声明为 synchronized ,由于在线程的整个生命期内它一直在运行,因此将导致它对本类任何 synchronized 方法的调用都永远不会成功。当然我们可以通过将访问类成员变量的代码放到专门的方法中,将其声明为 synchronized ,并在主方法中调用来解决这一问题,但是 Java 为我们提供了更好的解决办法,那就是 synchronized 块。2. synchronized 块:通过 synchronized关键字来声明synchronized 块。语法如下: synchronized(syncObject) {//允许访问控制的代码}synchronized 块是这样一个代码块,其中的代码必须获得对象 syncObject (如前所述,可以是类实例或类)的锁方能执行,具体机制同前所述。由于可以针对任意代码块,且可任意指定上锁的对象,故灵活性较高。六:线程的阻塞为了解决对共享存储区的访问冲突,Java 引入了同步机制,现在让我们来考察多个线程对共享资源的访问,显然同步机制已经不够了,因为在任意时刻所要求的资源不一定已经准备好了被访问,反过来,同一时刻准备好了的资源也可能不止一个。为了解决这种情况下的访问控制问题,Java 引入了对阻塞机制的支持。阻塞指的是暂停一个线程的执行以等待某个条件发生(如某资源就绪),学过操作系统的同学对它一定已经很熟悉了。Java 提供了大量方法来支持阻塞,下面让我们逐一分析。1. sleep() 方法:sleep() 允许 指定以毫秒为单位的一段时间作为参数,它使得线程在指定的时间内进入阻塞状态,不能得到CPU 时间,指定的时间一过,线程重新进入可执行状态。典型地,sleep() 被用在等待某个资源就绪的情形:测试发现条件不满足后,让线程阻塞一段时间后重新测试,直到条件满足为止。2. suspend() 和 resume() 方法:两个方法配套使用,suspend()使得线程进入阻塞状态,并且不会自动恢复,必须其对应的resume() 被调用,才能使得线程重新进入可执行状态。典型地,suspend() 和 resume() 被用在等待另一个线程产生的结果的情形:测试发现结果还没有产生后,让线程阻塞,另一个线程产生了结果后 lishixinzhi/Article/program/Java/gj/201311/27622
网站设计制作、成都网站制作介绍好的网站是理念、设计和技术的结合。成都创新互联拥有的网站设计理念、多方位的设计风格、经验丰富的设计团队。提供PC端+手机端网站建设,用营销思维进行网站设计、采用先进技术开源代码、注重用户体验与SEO基础,将技术与创意整合到网站之中,以契合客户的方式做到创意性的视觉化效果。
具体代码如下:
以下是两个线程:
import java.util.*;
public class Thread_List_Operation {
//假设有这么一个队列
static List list = new LinkedList();
public static void main(String[] args) {
Thread t;
t = new Thread(new T1());
t.start();
t = new Thread(new T2());
t.start();
}
}
//线程T1,用来给list添加新元素
class T1 implements Runnable{
void getElemt(Object o){
Thread_List_Operation.list.add(o);
System.out.println(Thread.currentThread().getName() + "为队列添加了一个元素");
}
@Override
public void run() {
for (int i = 0; i 10; i++) {
getElemt(new Integer(1));
}
}
}
//线程T2,用来给list添加新元素
class T2 implements Runnable{
void getElemt(Object o){
Thread_List_Operation.list.add(o);
System.out.println(Thread.currentThread().getName() + "为队列添加了一个元素");
}
@Override
public void run() {
for (int i = 0; i 10; i++) {
getElemt(new Integer(1));
}
}
}
//结果(乱序)
Thread-0为队列添加了一个元素
Thread-1为队列添加了一个元素
Thread-0为队列添加了一个元素
Thread-1为队列添加了一个元素
Thread-1为队列添加了一个元素
Thread-1为队列添加了一个元素
Thread-1为队列添加了一个元素
Thread-1为队列添加了一个元素
Thread-1为队列添加了一个元素
Thread-1为队列添加了一个元素
Thread-1为队列添加了一个元素
Thread-1为队列添加了一个元素
Thread-0为队列添加了一个元素
Thread-0为队列添加了一个元素
Thread-0为队列添加了一个元素
Thread-0为队列添加了一个元素
Thread-0为队列添加了一个元素
Thread-0为队列添加了一个元素
Thread-0为队列添加了一个元素
Thread-0为队列添加了一个元素
线程池通俗的描述就是预先创建若干空闲线程 等到需要用多线程去处理事务的时候去唤醒某些空闲线程执行处理任务 这样就省去了频繁创建线程的时间 因为频 繁创建线程是要耗费大量的CPU资源的 如果一个应用程序需要频繁地处理大量并发事务 不断的创建销毁线程往往会大大地降低系统的效率 这时候线程池就派 上用场了
本文旨在使用Java语言编写一个通用的线程池 当需要使用线程池处理事务时 只需按照指定规范封装好事务处理对象 然后用已有的线程池对象去自动选择空 闲线程自动调用事务处理对象即可 并实现线程池的动态修改(修改当前线程数 最大线程数等) 下面是实现代码
//ThreadTask java
package polarman threadpool;
/** *//**
*线程任务
* @author ryang
*
*/
public interface ThreadTask {
public void run();
}
//PooledThread java
package polarman threadpool;
import java util Collection; import java util Vector;
/** *//**
*接受线程池管理的线程
* @author ryang
*
*/
public class PooledThread extends Thread {
protected Vector tasks = new Vector();
protected boolean running = false;
protected boolean stopped = false;
protected boolean paused = false;
protected boolean killed = false;
private ThreadPool pool;
public PooledThread(ThreadPool pool) { this pool = pool;
}
public void putTask(ThreadTask task) { tasks add(task);
}
public void putTasks(ThreadTask[] tasks) { for(int i= ; itasks length; i++) this tasks add(tasks[i]);
}
public void putTasks(Collection tasks) { this tasks addAll(tasks);
}
protected ThreadTask popTask() { if(tasks size() ) return (ThreadTask)tasks remove( );
else
return null;
}
public boolean isRunning() {
return running;
}
public void stopTasks() {
stopped = true;
}
public void stopTasksSync() {
stopTasks();
while(isRunning()) { try {
sleep( );
} catch (InterruptedException e) {
}
}
}
public void pauseTasks() {
paused = true;
}
public void pauseTasksSync() {
pauseTasks();
while(isRunning()) { try {
sleep( );
} catch (InterruptedException e) {
}
}
}
public void kill() { if(!running)
interrupt();
else
killed = true;
}
public void killSync() {
kill();
while(isAlive()) { try {
sleep( );
} catch (InterruptedException e) {
}
}
}
public synchronized void startTasks() {
running = true;
this notify();
}
public synchronized void run() { try { while(true) { if(!running || tasks size() == ) { pool notifyForIdleThread(); //System out println(Thread currentThread() getId() + : 空闲 ); this wait(); }else {
ThreadTask task;
while((task = popTask()) != null) { task run(); if(stopped) {
stopped = false;
if(tasks size() ) { tasks clear(); System out println(Thread currentThread() getId() + : Tasks are stopped );
break;
}
}
if(paused) {
paused = false;
if(tasks size() ) { System out println(Thread currentThread() getId() + : Tasks are paused );
break;
}
}
}
running = false;
}
if(killed) {
killed = false;
break;
}
}
}catch(InterruptedException e) {
return;
}
//System out println(Thread currentThread() getId() + : Killed );
}
}
//ThreadPool java
package polarman threadpool;
import java util Collection; import java util Iterator; import java util Vector;
/** *//**
*线程池
* @author ryang
*
*/
public class ThreadPool {
protected int maxPoolSize;
protected int initPoolSize;
protected Vector threads = new Vector();
protected boolean initialized = false;
protected boolean hasIdleThread = false;
public ThreadPool(int maxPoolSize int initPoolSize) { this maxPoolSize = maxPoolSize; this initPoolSize = initPoolSize;
}
public void init() {
initialized = true;
for(int i= ; iinitPoolSize; i++) {
PooledThread thread = new PooledThread(this);
thread start(); threads add(thread);
}
//System out println( 线程池初始化结束 线程数= + threads size() + 最大线程数= + maxPoolSize);
}
public void setMaxPoolSize(int maxPoolSize) { //System out println( 重设最大线程数 最大线程数= + maxPoolSize); this maxPoolSize = maxPoolSize;
if(maxPoolSize getPoolSize())
setPoolSize(maxPoolSize);
}
/** *//**
*重设当前线程数
* 若需杀掉某线程 线程不会立刻杀掉 而会等到线程中的事务处理完成* 但此方法会立刻从线程池中移除该线程 不会等待事务处理结束
* @param size
*/
public void setPoolSize(int size) { if(!initialized) {
initPoolSize = size;
return;
}else if(size getPoolSize()) { for(int i=getPoolSize(); isize imaxPoolSize; i++) {
PooledThread thread = new PooledThread(this);
thread start(); threads add(thread);
}
}else if(size getPoolSize()) { while(getPoolSize() size) { PooledThread th = (PooledThread)threads remove( ); th kill();
}
}
//System out println( 重设线程数 线程数= + threads size());
}
public int getPoolSize() { return threads size();
}
protected void notifyForIdleThread() {
hasIdleThread = true;
}
protected boolean waitForIdleThread() {
hasIdleThread = false;
while(!hasIdleThread getPoolSize() = maxPoolSize) { try { Thread sleep( ); } catch (InterruptedException e) {
return false;
}
}
return true;
}
public synchronized PooledThread getIdleThread() { while(true) { for(Iterator itr=erator(); itr hasNext();) { PooledThread th = (PooledThread)itr next(); if(!th isRunning())
return th;
}
if(getPoolSize() maxPoolSize) {
PooledThread thread = new PooledThread(this);
thread start(); threads add(thread);
return thread;
}
//System out println( 线程池已满 等待 );
if(waitForIdleThread() == false)
return null;
}
}
public void processTask(ThreadTask task) {
PooledThread th = getIdleThread();
if(th != null) { th putTask(task); th startTasks();
}
}
public void processTasksInSingleThread(ThreadTask[] tasks) {
PooledThread th = getIdleThread();
if(th != null) { th putTasks(tasks); th startTasks();
}
}
public void processTasksInSingleThread(Collection tasks) {
PooledThread th = getIdleThread();
if(th != null) { th putTasks(tasks); th startTasks();
}
}
}
下面是线程池的测试程序
//ThreadPoolTest java
import java io BufferedReader; import java io IOException; import java io InputStreamReader;
import polarman threadpool ThreadPool; import polarman threadpool ThreadTask;
public class ThreadPoolTest {
public static void main(String[] args) { System out println( quit 退出 ); System out println( task A 启动任务A 时长为 秒 ); System out println( size 设置当前线程池大小为 ); System out println( max 设置线程池最大线程数为 ); System out println();
final ThreadPool pool = new ThreadPool( ); pool init();
Thread cmdThread = new Thread() { public void run() {
BufferedReader reader = new BufferedReader(new InputStreamReader(System in));
while(true) { try { String line = reader readLine(); String words[] = line split( ); if(words[ ] equalsIgnoreCase( quit )) { System exit( ); }else if(words[ ] equalsIgnoreCase( size ) words length = ) { try { int size = Integer parseInt(words[ ]); pool setPoolSize(size); }catch(Exception e) {
}
}else if(words[ ] equalsIgnoreCase( max ) words length = ) { try { int max = Integer parseInt(words[ ]); pool setMaxPoolSize(max); }catch(Exception e) {
}
}else if(words[ ] equalsIgnoreCase( task ) words length = ) { try { int timelen = Integer parseInt(words[ ]); SimpleTask task = new SimpleTask(words[ ] timelen * ); pool processTask(task); }catch(Exception e) {
}
}
} catch (IOException e) { e printStackTrace();
}
}
}
};
cmdThread start();
/**//*
for(int i= ; i ; i++){
SimpleTask task = new SimpleTask( Task + i (i+ )* ); pool processTask(task);
}*/
}
}
class SimpleTask implements ThreadTask {
private String taskName;
private int timeLen;
public SimpleTask(String taskName int timeLen) { this taskName = taskName; this timeLen = timeLen;
}
public void run() { System out println(Thread currentThread() getId() +
: START TASK + taskName + );
try { Thread sleep(timeLen); } catch (InterruptedException e) {
}
System out println(Thread currentThread() getId() +
: END TASK + taskName + );
}
}
使用此线程池相当简单 下面两行代码初始化线程池
ThreadPool pool = new ThreadPool( ); pool init();
要处理的任务实现ThreadTask 接口即可(如测试代码里的SimpleTask) 这个接口只有一个方法run()
两行代码即可调用
lishixinzhi/Article/program/Java/hx/201311/27203
java中多线程的实现方式有两种,一种是继承java.lang.Thread类,另一种是实现java.lang.Runnable接口。下面是两种方式的简单代码。继承Thread类方式:import java.lang.Thread; //用集成Thread类方式实现多线程。 public class Test{ public static void main(String arg[]){ T t1=new T(); T t2=new T(); //更改新线程名称 t1.setName("t1"); t2.setName("t2"); //启动线程 t1.start(); t2.start(); } } class T extends Thread{ //重写run()方法 public void run(){ System.out.println(this.getName()); } }输出结果为:t1t2实现Runnable接口方式:在使用Runnable接口时需要建立一个Thread实例。因此,无论是通过Thread类还是Runnable接口建立线程,都必须建立Thread类或它的子类的实例。import java.lang.*; //用实现Runnable接口的方式实现多线程。 public class Test{ public static void main(String arg[]){ T t1=new T(); T t2=new T(); //一定要实例化Thread对象,将实现Runnable接口的对象作为参数传入。 Thread th1=new Thread(t1,"t1"); Thread th2=new Thread(t2,"t2"); //启动线程 th1.start(); th2.start(); } } class T implements Runnable{ //重写run()方法 public void run(){ System.out.println(Thread.currentThread().getName()); } }输出结果为:t1t2public void run()方法是JAVA中线程的执行体方法,所有线程的操作都是从run方法开始,有点类似于main()方法,即主线程。