符合中小企业对网站设计、功能常规化式的企业展示型网站建设
本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...
商城网站建设因基本功能的需求不同费用上面也有很大的差别...
手机微信网站开发、微信官网、微信商城网站...
给你一个函数 Public Sub Vect1XtoVect2(ByVal x1 As Double, ByVal y1 As Double, ByVal z1 As Double, _ ByVal x2 As Double, ByVal y2 As Double, ByVal z2 As Double, _ ByRef xNew As Double, ByRef yNew As Double, ByRef zNew As Double) '矢量叉积 xNew = y1 * z2 - z1 * y2 yNew = z1 * x2 - x1 * z2 zNew = x1 * y2 - y1 * x2 End Sub其中x1,y1,z1为第一个矢量,x2,y2,z2为第二个矢量xnew,ynew,znew为得到的新矢量
创新互联建站主要从事网站设计、做网站、网页设计、企业做网站、公司建网站等业务。立足成都服务肥城,10多年网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:028-86922220
要实现什么样的功能呢?矩阵就是二维表吧,在.Net中有许多方法可以实现二维表,根据不同的需求选择适合的方法,你应该详细一点说明
运用初等行变换法。具体如下:
将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵B=[A,I]对专B施行初等行变换,即对A与I进行属完全相同的若干初等行变换,目标是把A化为单位矩阵。当A化为单位矩阵I的同时,B的右一半矩阵同时化为了A的逆矩阵。
如求
的逆矩阵
故A可逆并且,由右一半可得逆矩阵A^-1=
扩展资料:
矩阵的应用:
在几何光学里,可以找到很多需要用到矩阵的地方。几何光学是一种忽略了光波波动性的近似理论,这理论的模型将光线视为几何射线。
采用近轴近似,假若光线与光轴之间的夹角很小,则透镜或反射元件对于光线的作用,可以表达为2×2矩阵与向量的乘积。这向量的两个分量是光线的几何性质(光线的斜率、光线跟光轴之间在主平面。
这矩阵称为光线传输矩阵,内中元素编码了光学元件的性质。对于折射,这矩阵又细分为两种:“折射矩阵”与“平移矩阵”。折射矩阵描述光线遇到透镜的折射行为。平移矩阵描述光线从一个主平面传播到另一个主平面的平移行为。
矩阵求逆的VB程序
Private Function MRinv(N As Integer, mtxA() As Double) As Boolean
'****************************************************************************************
' 功能: 实现矩阵求逆的全选主元高斯-约当法
' 参数: n - Integer型变量,矩阵的阶数
' mtxA - Double型二维数组,体积为n x n。存放原矩阵A;返回时存放其逆矩阵A-1。
' 返回值:Boolean型,失败为False,成功为True
'****************************************************************************************
ReDim nIs(N) As Integer, nJs(N) As Integer
Dim i As Integer, j As Integer, k As Integer
Dim D As Double, p As Double
' 全选主元,消元
For k = 1 To N
D = 0#
For i = k To N
For j = k To N
p = Abs(mtxA(i, j))
If (p D) Then
D = p
nIs(k) = i
nJs(k) = j
End If
Next j
Next i
' 求解失败
If (D + 1# = 1#) Then
MRinv = False
Exit Function
End If
If (nIs(k) k) Then
For j = 1 To N
p = mtxA(k, j)
mtxA(k, j) = mtxA(nIs(k), j)
mtxA(nIs(k), j) = p
Next j
End If
If (nJs(k) k) Then
For i = 1 To N
p = mtxA(i, k)
mtxA(i, k) = mtxA(i, nJs(k))
mtxA(i, nJs(k)) = p
Next i
End If
mtxA(k, k) = 1# / mtxA(k, k)
For j = 1 To N
If (j k) Then mtxA(k, j) = mtxA(k, j) * mtxA(k, k)
Next j
For i = 1 To N
If (i k) Then
For j = 1 To N
If (j k) Then mtxA(i, j) = mtxA(i, j) - mtxA(i, k) * mtxA(k, j)
Next j
End If
Next i
For i = 1 To N
If (i k) Then mtxA(i, k) = -mtxA(i, k) * mtxA(k, k)
Next i
Next k
' 调整恢复行列次序
For k = N To 1 Step -1
If (nJs(k) k) Then
For j = 1 To N
p = mtxA(k, j)
mtxA(k, j) = mtxA(nJs(k), j)
mtxA(nJs(k), j) = p
Next j
End If
If (nIs(k) k) Then
For i = 1 To N
p = mtxA(i, k)
mtxA(i, k) = mtxA(i, nIs(k))
mtxA(i, nIs(k)) = p
Next i
End If
Next k
' 求解成功
MRinv = True
End Function
来源: