网创优客建站品牌官网
为成都网站建设公司企业提供高品质网站建设
热线:028-86922220
成都专业网站建设公司

定制建站费用3500元

符合中小企业对网站设计、功能常规化式的企业展示型网站建设

成都品牌网站建设

品牌网站建设费用6000元

本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...

成都商城网站建设

商城网站建设费用8000元

商城网站建设因基本功能的需求不同费用上面也有很大的差别...

成都微信网站建设

手机微信网站建站3000元

手机微信网站开发、微信官网、微信商城网站...

建站知识

当前位置:首页 > 建站知识

pandas对齐运算-创新互联

Pandas的对齐运算

是数据清洗的重要过程,可以按索引对齐进行运算,如果没对齐的位置则补NaN,最后也可以填充NaN

创新互联公司成立十多年来,这条路我们正越走越好,积累了技术与客户资源,形成了良好的口碑。为客户提供成都网站设计、网站建设、网站策划、网页设计、域名申请、网络营销、VI设计、网站改版、漏洞修补等服务。网站是否美观、功能强大、用户体验好、性价比高、打开快等等,这些对于网站建设都非常重要,创新互联公司通过对建站技术性的掌握、对创意设计的研究为客户提供一站式互联网解决方案,携手广大客户,共同发展进步。

Series的对齐运算

1. Series按行、索引对齐

示例代码:

s1 = pd.Series(range(10, 20), index = range(10))
s2 = pd.Series(range(20, 25), index = range(5))

print('s1: ')
print(s1)

运行结果:

s1: 
0    10
1    11
2    12
3    13
4    14
5    15
6    16
7    17
8    18
9    19
dtype: int64

s2: 
0    20
1    21
2    22
3    23
4    24
dtype: int64

2. Series的对齐运算

示例代码:

s1 + s2

运行结果:

0    30.0
1    32.0
2    34.0
3    36.0
4    38.0
5     NaN
6     NaN
7     NaN
8     NaN
9     NaN
dtype: float64

DataFrame的对齐运算

1. DataFrame按行、列索引对齐

示例代码:

df1 = pd.DataFrame(np.ones((2,2)), columns = ['a', 'b'])
df2 = pd.DataFrame(np.ones((3,3)), columns = ['a', 'b', 'c'])

print('df1: ')
print(df1)

print('') 
print('df2: ')
print(df2)

运行结果:

df1: 
     a    b
0  1.0  1.0
1  1.0  1.0

df2: 
     a    b    c
0  1.0  1.0  1.0
1  1.0  1.0  1.0
2  1.0  1.0  1.0

2. DataFrame的对齐运算

示例代码:

df1 + df2

运行结果:

 a    b   c
0  2.0  2.0 NaN
1  2.0  2.0 NaN
2  NaN  NaN NaN

填充未对齐的数据进行运算

  1. fill_value

使用 add, sub, div, mul 的同时,

通过 fill_value指定填充值,未对齐的数据将和填充值做运算

示例代码:

print(s1)
print(s2)
s1.add(s2, fill_value = -1)

print(df1)
print(df2)
df1.sub(df2, fill_value = 2.)

运行结果:

print(s1)
print(s2)
s1.add(s2, fill_value = -1)

print(df1)
print(df2)
df1.sub(df2, fill_value = 2.)

运行结果:

# print(s1)
0    10
1    11
2    12
3    13
4    14
5    15
6    16
7    17
8    18
9    19
dtype: int64

# print(s2)
0    20
1    21
2    22
3    23
4    24
dtype: int64

# s1.add(s2, fill_value = -1)
0    30.0
1    32.0
2    34.0
3    36.0
4    38.0
5    14.0
6    15.0
7    16.0
8    17.0
9    18.0
dtype: float64

# print(df1)
     a    b
0  1.0  1.0
1  1.0  1.0

# print(df2)
     a    b    c
0  1.0  1.0  1.0
1  1.0  1.0  1.0
2  1.0  1.0  1.0

# df1.sub(df2, fill_value = 2.)
     a    b    c
0  0.0  0.0  1.0
1  0.0  0.0  1.0
2  1.0  1.0  1.0

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


当前题目:pandas对齐运算-创新互联
网页路径:http://bjjierui.cn/article/dpdhsp.html

其他资讯