网创优客建站品牌官网
为成都网站建设公司企业提供高品质网站建设
热线:028-86922220
成都专业网站建设公司

定制建站费用3500元

符合中小企业对网站设计、功能常规化式的企业展示型网站建设

成都品牌网站建设

品牌网站建设费用6000元

本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...

成都商城网站建设

商城网站建设费用8000元

商城网站建设因基本功能的需求不同费用上面也有很大的差别...

成都微信网站建设

手机微信网站建站3000元

手机微信网站开发、微信官网、微信商城网站...

建站知识

当前位置:首页 > 建站知识

伽马函数c语言,伽马函数c语言表达式

γ(x)是什么函数

Γ(x)称为伽马函数,它是用一个积分式定义的,不是初等函数。伽马函数有性质:Γ(x+1)=xΓ(x),Γ(0)=1,Γ(1/2)=√π,对正整数n,有Γ(n+1)=n! 11。

创新互联是一家专业提供吉林企业网站建设,专注与做网站、网站建设、成都h5网站建设、小程序制作等业务。10年已为吉林众多企业、政府机构等服务。创新互联专业的建站公司优惠进行中。

表达式:

Γ(a)=∫{0积到无穷大}。

[x^(a-1)]*[e^(-x)]dx。

介绍

伽玛函数是阶乘函数在实数与复数上扩展的一类函数,该函数在分析学、概率论、偏微分方程和组合数学中有重要的应用。

与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分,可以用来快速计算同伽马函数形式相类似的积分。伽玛函数作为阶乘的延拓,是定义在复数范围内的亚纯函数。

伽玛函数是什么?

Γ(x)称为伽马函数,它是用一个积分式定义的,不是初等函数。伽马函数有性质:Γ(x+1)=xΓ(x),Γ(0)=1,Γ(1/2)=√π,对正整数n,有Γ(n+1)=n! 11

表达式:

Γ(a)=∫{0积到无穷大}

[x^(a-1)]*[e^(-x)]dx

在Matlab中的应用

其表示N在N-1到0范围内的整数阶乘。

公式为:gamma(N)=(N-1)*(N-2)*...*2*1

例如:

gamma(6)=5*4*3*2*1

ans=120

以上内容参考:百度百科-伽玛函数

如何用C语言用伽马函数求值

简单的说就是整数阶乘的推广,它有一个积分的表达式:

Γ(x)=∫e^(-t)*t^(x-1)dt (积分的下限式0,上限式+∞)

算法源自《常用算法程序集》徐士良

#include "stdio.h"

double gam1(x)

double x;

{ int i;

double y,t,s,u;

static double a[11]={ 0.0000677106,-0.0003442342,

0.0015397681,-0.0024467480,0.0109736958,

-0.0002109075,0.0742379071,0.0815782188,

0.4118402518,0.4227843370,1.0};

if (x=0.0)

{ printf("err**x=0!\n"); return(-1.0);}

y=x;

if (y=1.0)

{ t=1.0/(y*(y+1.0)); y=y+2.0;}

else if (y=2.0)

{ t=1.0/y; y=y+1.0;}

else if (y=3.0) t=1.0;

else

{ t=1.0;

while (y3.0)

{ y=y-1.0; t=t*y;}

}

s=a[0]; u=y-2.0;

for (i=1; i=10; i++)

s=s*u+a[i];

s=s*t;

return(s);

}

伽马函数是什么?

伽玛函数(Gamma函数),也叫欧拉第二积分,是阶乘函数在实数与复数上扩展的一类函数。该函数在分析学、概率论、偏微分方程和组合数学中有重要的应用。与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分。可以用来快速计算同伽马函数形式相类似的积分。

(1)在实数域上伽玛函数定义为:

(2)在复数域上伽玛函数定义为:

扩展资料

伽马函数产生的背景:

1728年,哥德巴赫在考虑数列插值的问题,通俗的说就是把数列的通项公式定义从整数集合延拓到实数集合,例如数列1,4,9,16.....可以用通项公式n²自然的表达,即便 n 为实数的时候,这个通项公式也是良好定义的。

但是哥德巴赫无法解决阶乘往实数集上延拓的这个问题,于是写信请教尼古拉斯·伯努利和他的弟弟丹尼尔·伯努利,由于欧拉当时和丹尼尔·伯努利在一块,他也因此得知了这个问题。而欧拉于1729 年完美地解决了这个问题,由此导致了伽玛 函数的诞生,当时欧拉只有22岁。

参考资料来源:百度百科-伽玛函数


网页标题:伽马函数c语言,伽马函数c语言表达式
本文URL:http://bjjierui.cn/article/dscjscp.html

其他资讯