符合中小企业对网站设计、功能常规化式的企业展示型网站建设
本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...
商城网站建设因基本功能的需求不同费用上面也有很大的差别...
手机微信网站开发、微信官网、微信商城网站...
# DDD概览
创新互联专注于阿拉山口网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供阿拉山口营销型网站建设,阿拉山口网站制作、阿拉山口网页设计、阿拉山口网站官网定制、成都微信小程序服务,打造阿拉山口网络公司原创品牌,更为您提供阿拉山口网站排名全网营销落地服务。
## 启迪
领域可以理解为业务,领域专家就是对业务很了解的人。
限界上下文也就是微服务的边界,也可以理解为微服务,一个限界上下文=一个微服务。
个人理解领域驱动设计就是微服务驱动设计,从战略上先进行微服务的划分,从战术上针对某个微服务进行领域模型的设计也就是业务模型的设计。
领域模型包括:
- 实体
- 值对象
- 聚合
- 领域服务
- 领域事件
- 资源库
- 应用服务
## 什么是领域驱动设计?
理解领域驱动设计是什么之前,我们先来理解下什么是领域?
领域可以理解为业务,领域专家就是对业务很了解的人。
领域驱动设计的核心就是和最了解业务的人也就是领域专家一起通过领域建模的方式去设计我们的软件程序。
- 那么领域如何驱动设计?或者说业务如何驱动设计?
传统开发过程我们都是基于面向数据开发,拿到产品原型脑海里想着都是应该创建哪些表和哪些字段才能满足需求。
而领域驱动设计开发过程是让我们基于面向业务开发、面向领域模型开发。
领域模型的核心是通过承载和保存领域知识,并通过模型与代码的映射将这些领域知识保存在程序代码中,
在传统开发中,当业务被转换为一张张数据表时,丢失最多的就是领域知识(领域知识也就是我们在模型中定义的一些业务逻辑行为)。
面向领域模型开发的优点:
- 存储方便,统一使用JSON进行存储。
例:
订单领域包含基础信息、商品信息、金额信息、支付信息等包含订单全生命周期的子域,
对于传统面向数据的开发模式我们需要创建N张表进行存储订单的信息,但是面向领域开发时我们
可以通过利用nosql数据库(mongo、es等)进行保存整个订单域的信息,提高查询、更新效率,简化代码
- 复用性高,引用某个领域模型,就可以拥有该领域模型的所有行为。
例:
基于微服务架构下,某个电商应用需要一个判断某个订单是否是在线支付订单的逻辑时,
对于传统的开发模式我们需要调用订单中心的服务查询订单信息,然后写一个判断是否在线支付订单的方法。
如果有多个应用都需要这个逻辑时,每个应该都需要重复写相同的方法。
但面向领域开发时,只需要引用订单中心的jar包,然后统一调用订单领域内的方法即可。
这样就实现了业务的高内聚
## DDD可以做什么
DDD主要分为两个部分,战略设计与战术设计
- 战略设计
- 围绕微服务拆分
- 战术设计
- 微服务内部设计
## DDD怎么做
- 战略设计
- 和领域专家一起通过(过往经验、事物联系、事件风暴等)划分【限界上下文】
限界上下文也就是微服务的边界,也可以理解为微服务。
一个限界上下文=一个微服务
- 战术设计
- 开发人员通过(领域模型)保存【领域知识】
领域知识也就是事物(角色)、行为(规则)和关系
## DDD领域模型
领域模型包含什么?
- 实体
具有唯一标识,包含着业务知识的【充血模型】对象,用于对唯一性事物进行建模。
例:
```
public class Order {
private long orderId;
private OrderAmount amount;
private List item;
}
```
- 值对象
生成后即不可变对象,通常作为实体的属性,用于描述领域中的事物的某种特征。
例:
```
public class OrderItem {
private long orderId;
private String productCode;
private String productName;
}
```
- 聚合
将实体和值对象在一致性边界之内组成聚合,使用聚合划分微服务(限界上下文)内部的边界
- 领域服务
分担实体的功能,承接部分业务逻辑,做一些实体不变处理的业务流程。不是必须的
主要承接内部领域服务调用和外部微服务调用,及一些聚合业务逻辑处理。
例:
```
@Service
public class ShoppingcartDomainService {
private final ShoppingcartRepository shoppingcartRepository;
private final ProductFacade productFacade;
private final UserFacade userFacade;
private final PromotionFacade promotionFacade;
// 1.查询购物车信息
ShoppingcartDO entity = shoppingcartRepository.loadShoppingcart(userId);
// 2.调用【用户中心】服务查询用户信息
User user = userFacade.getUser(userId);
// 3.调用【商品中心】服务查询商品信息
Product product = productFacade.getProduct(productCode);
// 4.调用【活动中心】服务查询活动信息
Promotion promotion = promotionFacade.getPromotionByProductCode(productCode);
// 5.创建购物车实体
Shoppingcart shoppingcart = new Shoppingcart(entity.getId, user, product, promotion);
// 6.购物车按活动分组
shoppingcart.groupby4Promotion();
}
```
- 领域事件
表示领域中发生的事情,通过领域事件可以实现本地微服务(限界上下文)内的信息同步,同时也可以实现对外部系统的解耦
- 资源库
保存聚合的地方,将聚合实例存放在资源库(Repository)中,之后再通过该资源库来获取相同的实例。
- 应用服务
应用服务负责流程编排,它将要实现的功能委托给一个或多个领域服务来实现,
本身只负责处理业务用例的执行顺序以及结果的拼装同时也可以在应用服务做些权限验证等工作。
![](images/application-service.png)
NoSQL,指的是非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的
SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。
NoSQL(NoSQL
= Not Only SQL
),意即“不仅仅是SQL”,是一项全新的数据库革命性运动,早期就有人提出,发展至2009年趋势越发高涨。NoSQL的拥护者们提倡运用非关系型的数
据存储,相对于铺天盖地的关系型数据库运用,这一概念无疑是一种全新的思维的注入。
从这一新兴技术中选择一款正确的NoSQL数据库是非常具有挑战性的。比一下网建议在选择时考虑以下因素:
并发控制
并
发控制指的是当多个用户同时更新运行时,用于保护数据库完整性的各种技术。并发机制不正确可能导致脏读、幻读和不可重复读等此类问题。并发控制的目的是保
证一个用户的工作不会对另一个用户的工作产生不合理的影响。在某些情况下,这些措施保证了当用户和其他用户一起操作时,所得的结果和她单独操作时的结果是
一样的。在另一些情况下,这表示用户的工作按预定的方式受其他用户的影响。
封锁
就是事务T在对某个数据对象(例如表、记录等)操作之前,先向系统发出请求,对其加锁。加锁后事务T就对该数据对象有了一定的控制,在事务T释放它的锁之前,其它的事务不能更新此数据对象。
封锁是一次只允许一个用户读取或修改的一种机制,是实现并发控制的一个非常重要的技术。
MVCC
Multi-Version Concurrency Control多版本并发控制,维持一个数据的多个版本使读写操作没有冲突。MVCC优化了数据库并发系统,使系统在有大量并发用户时得到最高的性能,并且可以不用关闭服务器就直接进行热备份。
ACID
指
数据库事务正确执行的四个基本要素的缩写。包含:原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久
性(Durability)。一个支持事务(Transaction)的数据库系统,必需要具有这四种特性,否则在事务过程(Transaction
processing)当中无法保证数据的正确性,交易过程极可能达不到交易方的要求。
None
一些系统不提供原子性。
镜像
数据库镜像是DBMS根据DBA的要求,自动把整个数据库或其中的关键数据复制到另一个磁盘上,每当主数据库更新时,DBMS会自动把更新后的数据复制过去,即DBMS自动保证镜像数据与主数据的一致性。
镜像分为同步和异步。
数据存储
指的是数据的物理特性怎样被存储在数据库中。
磁盘 数据被存储在硬盘驱动器里;
GFS或谷歌文件系统是一个由谷歌开发的专有的分布式文件系统;
Hadoop是Apache软件框架,免费许可下支持数据密集型分布式应用程序;
RAM随机存储器;
插件 可以添加外部插件;
Amazon S3通过Web服务接口提供存储;
BDB:BDB
全称是 “Berkeley DB”,它是MySQL具有事务能力的表类型,由Sleepycat
Software开发。BDB表类型提供了MySQL用户长久期盼的功能,即事务控制能力。在任何RDBMS中,事务控制能力都是一种极其重要和宝贵的功
能。事务控制能力使得我们能够确保一组命令确实已经全部执行成功,或者确保当任何一个命令出现错误时所有命令的执行结果均被退回。
实现语言
实现语言会影响数据库的发展速度。典型的NoSQL数据库是用低级语言如C / C + +编写的。另一方面,那些更高层次的语言如Java,使自定义更容易。
实现语言有:C, C++, Erlang, Java, Python
特性
考虑下列哪一个特点对你的数据库是最重要的:
持久性
可用性
一致性
分区容忍性
证书类型
下面这些许可证是一个不同的开放源码许可的形式:
GPL:通用公共许可证
BSD:伯克利软件分发
MPL:Mozilla公共许可证
EPL:Eclipse公共许可证
IDPL:最初的开发者的公共许可证
LGPL:较宽松通用公共许可证
存储类型
存储类型是NoSQL数据库最大的不同,是决定使用哪款数据库的一个首要指标。
关键字:支持get、put和删除操作
按列存储:相对于传统的按行存储,数据集成容易多了
面向文件系统:存储像是JSON或XML这样的结构化文件,很容易就能从面向对象软件中获取数据。
常见的关系型数据库管理系统产品有Oracle、SQL Server、Sybase、DB2、Access等。 1.Oracle
Oracle是1983年推出的世界上第一个开放式商品化关系型数据库管理系统。它采用标准的SQL结构化查询语言,支持多种数据类型,提供面向对象存储的数据支持,具有第四代语言开发工具,支持Unix、Windows NT、OS/2、Novell等多种平台。除此之外,它还具有很好的并行处理功能。Oracle产品主要由Oracle服务器产品、Oracle开发工具、Oracle应用软件组成,也有基于微机的数据库产品。主要满足对银行、金融、保险等企业、事业开发大型数据库的需求。
2.SQL Server
SQL即结构化查询语言(Structured Query Language,简称为SQL)。SQL Server最早出现在1988年,当时只能在OS/2操作系统上运行。2000年12月微软发布了SQL Server 2000,该软件可以运行于Windows NT/2000/XP等多种操作系统之上,是支持客户机/服务器结构的数据库管理系统,它可以帮助各种规模的企业管理数据。
随着用户群的不断增大,SQL Server在易用性、可靠性、可收缩性、支持数据仓库、系统集成等方面日趋完美。特别是SQL Server的数据库搜索引擎,可以在绝大多数的操作系统之上运行,并针对海量数据的查询进行了优化。目前SQL Server已经成为应用最广泛的数据库产品之一。
由于使用SQL Server不但要掌握SQL Server的操作,而且还要能熟练掌握Windows NT/2000 Server的运行机制,以及SQL语言,所以对非专业人员的学习和使用有一定的难度。
3.Sybase
1987年推出的大型关系型数据库管理系统Sybase,能运行于OS/2、Unix、Windows NT等多种平台,它支持标准的关系型数据库语言SQL,使用客户机/服务器模式,采用开放体系结构,能实现网络环境下各节点上服务器的数据库互访操作。技术先进、性能优良,是开发大中型数据库的工具。Sybase产品主要由服务器产品Sybase SQL Server、客户产品Sybase SQL Toolset和接口软件Sybase Client/Server Interface组成,还有著名的数据库应用开发工具PowerBuilder。
4.DB2
DB2是基于SQL的关系型数据库产品。20世纪80年代初期DB2的重点放在大型的主机平台上。到90年代初,DB2发展到中型机、小型机以及微机平台。DB2适用于各种硬件与软件平台。各种平台上的DB2有共同的应用程序接口,运行在一种平台上的程序可以很容易地移植到其他平台。DB2的用户主要分布在金融、商业、铁路、航空、医院、旅游等各个领域,以金融系统的应用最为突出。
5.Access
Access是在Windows操作系统下工作的关系型数据库管理系统。它采用了Windows程序设计理念,以Windows特有的技术设计查询、用户界面、报表等数据对象,内嵌了VBA(全称为Visual Basic Application)程序设计语言,具有集成的开发环境。Access提供图形化的查询工具和屏幕、报表生成器,用户建立复杂的报表、界面无需编程和了解SQL语言,它会自动生成SQL代码。
Access被集成到Office中,具有Office系列软件的一般特点,如菜单、工具栏等。与其他数据库管理系统软件相比,更加简单易学,一个普通的计算机用户,没有程序语言基础,仍然可以快速地掌握和使用它。最重要的一点是,Access的功能比较强大,足以应付一般的数据管理及处理需要,适用于中小型企业数据管理的需求。当然,在数据定义、数据安全可靠、数据有效控制等方面,它比前面几种数据库产品要逊色不少。
NoSQL(NoSQL
=
Not
Only
SQL
),意即“不仅仅是SQL”,是一项全新的数据库革命性运动,早期就有人提出,发展至2009年趋势越发高涨。NoSQL的拥护者们提倡运用非关系型的数据存储,相对于铺天盖地的关系型数据库运用,这一概念无疑是一种全新的思维的注入。
随着大数据的不断发展,非关系型的数据库现在成了一个极其热门的新领域,非关系数据库产品的发展非常迅速。现今的计算机体系结构在数据存储方面要有庞大的水平扩展性,而NoSQL也正是致力于改变这一现状。目前Google的
BigTable和Amazon
的Dynamo使用的就是NoSQL型数据库,本文介绍了10种出色的NoSQL数据库。
虽然NoSQL流行语火起来才短短一年的时间,但是不可否认,现在已经开始了第二代运动。尽管早期的堆栈代码只能算是一种实验,然而现在的系统已经更加的成熟、稳定。不过现在也面临着一个严酷的事实:技术越来越成熟——以至于原来很好的NoSQL数据存储不得不进行重写,也有少数人认为这就是所谓的2.0版本。这里列出一些比较知名的NoSQL工具,可以为大数据建立快速、可扩展的存储库。
给一个地址吧
package basic;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
public class JDBC {
public void findAll() {
try {
// 获得数据库驱动
//由于长时间不写,驱动名和URL都忘记了,不知道对不对,你应该知道的,自己改一下的哈
String url = "jdbc:oracle:thin:@localhost:1521:XE";
String userName = "system";
String password = "system";
Class.forName("oracle.jdbc.driver.OracleDriver");
// 创建连接
Connection conn = DriverManager.getConnection(url, userName,
password);
// 新建发送sql语句的对象
Statement st = conn.createStatement();
// 执行sql
String sql = "select * from users";
ResultSet rs = st.executeQuery(sql);
// 处理结果
while(rs.next()){
//这个地方就是给你的封装类属性赋值
System.out.println("UserName:"+rs.getString(0));
}
// 关闭连接
rs.close();
st.close();
conn.close();
} catch (ClassNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (SQLException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
public void delete(){
try {
//步骤还是那六个步骤,前边的两步是一样的
String url = "jdbc:oracle:thin:@localhost:1521:XE";
String userName = "system";
String password = "system";
Class.forName("oracle.jdbc.driver.OracleDriver");
Connection conn = DriverManager.getConnection(url,userName,password);
//这里的发送sql语句的对象是PreparedStatement,成为预处理sql对象,因为按条件删除是需要不定值的
String sql = "delete from users where id = ?";
PreparedStatement ps = conn.prepareStatement(sql);
ps.setInt(0, 1);
int row = ps.executeUpdate();
if(row!=0){
System.out.println("删除成功!");
}
// 关闭连接
rs.close();
st.close();
conn.close();
} catch (ClassNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (SQLException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
MongoDB是一款为web应用程序和互联网基础设施设计的数据库管理系统。没错MongoDB就是数据库,是NoSQL类型的数据库。
(1)MongoDB提出的是文档、集合的概念,使用BSON(类JSON)作为其数据模型结构,其结构是面向对象的而不是二维表,存储一个用户在MongoDB中是这样子的。
使用这样的数据模型,使得MongoDB能在生产环境中提供高读写的能力,吞吐量较于mysql等SQL数据库大大增强。
(2)易伸缩,自动故障转移。易伸缩指的是提供了分片能力,能对数据集进行分片,数据的存储压力分摊给多台服务器。自动故障转移是副本集的概念,MongoDB能检测主节点是否存活,当失活时能自动提升从节点为主节点,达到故障转移。
(3)数据模型因为是面向对象的,所以可以表示丰富的、有层级的数据结构,比如博客系统中能把“评论”直接怼到“文章“的文档中,而不必像myqsl一样创建三张表来描述这样的关系。
(1)文档数据类型
SQL类型的数据库是正规化的,可以通过主键或者外键的约束保证数据的完整性与唯一性,所以SQL类型的数据库常用于对数据完整性较高的系统。MongoDB在这一方面是不如SQL类型的数据库,且MongoDB没有固定的Schema,正因为MongoDB少了一些这样的约束条件,可以让数据的存储数据结构更灵活,存储速度更加快。
(2)即时查询能力
MongoDB保留了关系型数据库即时查询的能力,保留了索引(底层是基于B tree)的能力。这一点汲取了关系型数据库的优点,相比于同类型的NoSQL redis 并没有上述的能力。
(3)复制能力
MongoDB自身提供了副本集能将数据分布在多台机器上实现冗余,目的是可以提供自动故障转移、扩展读能力。
(4)速度与持久性
MongoDB的驱动实现一个写入语义 fire and forget ,即通过驱动调用写入时,可以立即得到返回得到成功的结果(即使是报错),这样让写入的速度更加快,当然会有一定的不安全性,完全依赖网络。
MongoDB提供了Journaling日志的概念,实际上像mysql的bin-log日志,当需要插入的时候会先往日志里面写入记录,再完成实际的数据操作,这样如果出现停电,进程突然中断的情况,可以保障数据不会错误,可以通过修复功能读取Journaling日志进行修复。
(5)数据扩展
MongoDB使用分片技术对数据进行扩展,MongoDB能自动分片、自动转移分片里面的数据块,让每一个服务器里面存储的数据都是一样大小。
MongoDB核心服务器主要是通过mongod程序启动的,而且在启动时不需对MongoDB使用的内存进行配置,因为其设计哲学是内存管理最好是交给操作系统,缺少内存配置是MongoDB的设计亮点,另外,还可通过mongos路由服务器使用分片功能。
MongoDB的主要客户端是可以交互的js shell 通过mongo启动,使用js shell能使用js直接与MongoDB进行交流,像使用sql语句查询mysql数据一样使用js语法查询MongoDB的数据,另外还提供了各种语言的驱动包,方便各种语言的接入。
mongodump和mongorestore,备份和恢复数据库的标准工具。输出BSON格式,迁移数据库。
mongoexport和mongoimport,用来导入导出JSON、CSV和TSV数据,数据需要支持多格式时有用。mongoimport还能用与大数据集的初始导入,但是在导入前顺便还要注意一下,为了能充分利用好mongoDB通常需要对数据模型做一些调整。
mongosniff,网络嗅探工具,用来观察发送到数据库的操作。基本就是把网络上传输的BSON转换为易于人们阅读的shell语句。
因此,可以总结得到,MongoDB结合键值存储和关系数据库的最好特性。因为简单,所以数据极快,而且相对容易伸缩还提供复杂查询机制的数据库。MongoDB需要跑在64位的服务器上面,且最好单独部署,因为是数据库,所以也需要对其进行热备、冷备处理。
因为本篇文章不是API手册,所有这里对shell的使用也是基础的介绍什么功能可以用什么语句,主要是为了展示使用MongoDB shell的方便性,如果需要知道具体的MongoDB shell语法可以查阅官方文档。
创建数据库并不是必须的操作,数据库与集合只有在第一次插入文档时才会被创建,与对数据的动态处理方式是一致的。简化并加速开发过程,而且有利于动态分配命名空间。如果担心数据库或集合被意外创建,可以开启严格模式。
以上的命令只是简单实例,假设如果你之前没有学习过任何数据库语法,同时开始学sql查询语法和MongoDB 查询语法,你会发现哪一个更简单呢?如果你使用的是java驱动去操作MongoDB,你会发现任何的查询都像Hibernate提供出来的查询方式一样,只要构建好一个查询条件对象,便能轻松查询(接下来会给出示例),博主之前熟悉ES6,所以入手MongoDB js shell完成没问题,也正因为这样简洁,完善的查询机制,深深的爱上了MongoDB。
使用java驱动链接MongoDB是一件非常简单的事情,简单的引用,简单的做增删改查。在使用完java驱动后我才发现spring 对MongoDB 的封装还不如官方自身提供出来的东西好用,下面简单的展示一下使用。
这里只举例了简单的链接与简单的MongoDB操作,可见其操作的容易性。使用驱动时是基于TCP套接字与MongoDB进行通信的,如果查询结果较多,恰好无法全部放进第一服务器中,将会向服务器发送一个getmore指令获取下一批查询结果。
插入数据到服务器时间,不会等待服务器的响应,驱动会假设写入是成功的,实际是使用客户端生成对象id,但是该行为可以通过配置配置,可以通过安全模式开启,安全模式可以校验服务器端插入的错误。
要清楚了解MongoDB的基本数据单元。在关系型数据库中有带列和行的数据表。而MongoDB数据的基本单元是BSON文档,在键值中有指向不定类型值的键,MongoDB拥有即时查询,但不支持联结操作,简单的键值存储只能根据单个键来获取值,不支持事务,但支持多种原子更新操作。
如读写比是怎样的,需要何种查询,数据是如何更新的,会不会存在什么并发问题,数据结构化的程度是要求高还是低。系统本身的需求决定mysql还是MongoDB。
在关于schema 的设计中要注意一些原则,比如:
数据库是集合的逻辑与物理分组,MongoDB没有提供创建数据库的语法,只有在插入集合时,数据库才开始建立。创建数据库后会在磁盘分配一组数据文件,所有集合、索引和数据库的其他元数据都保存在这些文件中,查阅数据库使用磁盘状态可通过。
集合是结构上或概念上相似得文档的容器,集合的名称可以包含数字、字母或 . 符号,但必须以字母或数字开头,完全。
限定集合名不能超过128个字符,实际上 . 符号在集合中很有用,能提供某种虚拟命名空间,这是一种组织上的原则,和其他集合是一视同仁的。在集合中可以使用。
其次是键值,在MongoDB里面所有的字符串都是UTF-8类型。数字类型包括double、int、long。日期类型都是UTC格式,所以在MongoDB里面看到的时间会比北京时间慢8小时。整个文档大小会限制在16m以内,因为这样可以防止创建难看的数据类型,且小文档可以提升性能,批量插入文档理想数字范围是10~200,大小不能超过16MB。
(1)索引能显著减少获取文档的所需工作量,具体的对比可以通过 .explain()方法进行对比
(2)解析查询时MongoDB通过最优计划选择一个索引进行查询,当没有最适合索引时,会先不同的使用各个索引进行查询,最终选出一个最优索引做查询
(3)如果有一个a-b的复合索引,那么仅针对a的索引是冗余的
(4)复合索引里的键的顺序是很重要的
(1)单键索引
(2)复合索引
(3)唯一性索引
(4)稀疏索引
如索引的字段会出现null的值,或是大量文档都不包含被索引的键。
如果数据集很大时,构建索引将会花费很长的时间,且会影响程序性能,可通过
当使用 mongorestore 时会重新构建索引。当曾经执行过大规模的删除时,可使用
对索引进行压缩,重建。
(1)查阅慢查询日志
(2)分析慢查询
注意新版本的MongoDB 的explain方法是需要参数的,不然只显示普通的信息。
本节同样主要简单呈现MongoDB副本集搭建的简易性,与副本集的强壮性,监控容易性
提供主从复制能力,热备能力,故障转移能力
实际上MongoDB对副本集的操作跟mysql主从操作是差不多的,先看一下mysql的主从数据流动过程
而MongoDB主要依赖的日志文件是oplog
写操作先被记录下来,添加到主节点的oplog里。与此同时,所有从结点复制oplog。首先,查看自己oplog里最后一条的时间戳;其次,查询主节点oplog里所有大于此时间戳的条目;最后,把那些条目添加到自己的oplog里并应用到自己的库里。从节点使用长轮询立即应用来自主结点oplog的新条目。
当遇到以下情况,从节点会停止复制
local数据库保存了所有副本集元素据和oplog日志
可以使用以下命令查看复制情况
每个副本集成员每秒钟ping一次其他所有成员,可以通过rs.status()看到节点上次的心跳检测时间戳和 健康 状况。
这个点没必要过多描述,但是有一个特殊场景,如果从节点和仲裁节点都被杀了,只剩下主节点,他会把自己降级成为从节点。
如果主节点的数据还没有写到从库,那么数据不能算提交,当该主节点变成从节点时,便会触发回滚,那些没写到从库的数据将会被删除,可以通过rollback子目录中的BSON文件恢复回滚的内容。
(1)使用单节点链接
只能链接到主节点,如果链接到从节点的话,会被拒绝写入操作,但是如果没有使用安全模式,因为mongo的fire and forget 特性,会把拒绝写入的异常给吃掉。
(2)使用副本集方式链接
能根据写入的情况自动进行故障转移,但是当副本集进行新的选举时,还是会出现故障,如果不使用安全模式,依旧会出现写不进去,但现实成功的情况。
分片是数据库切分的一个概念实现,这里也是简单总结为什么要使用分片以及分片的原理,操作。
当数据量过大,索引和工作数据集占用的内存就会越来越多,所以需要通过分片负载来解决这个问题
(1)分片组件
(2)分片的核心操作
分片一个集合:分片是根据一个属性的范围进行划分的,MongoDB使用所谓的分片键让每个文档在这些范围里找到自己的位置
块:是位于一个分片中的一段连续的分片键范围,可以理解为若干个块组成分片,分片组成MongoDB的全部数据
(3)拆分与迁移
块的拆分:初始化时只有一个块,达到最大块尺寸64MB或100000个文档就会触发块的拆分。把原来的范围一分为二,这样就有了两个块,每个块都有相同数量的文档。
迁移:当分片中的数据大小不一时会产生迁移的动作,比如分片A的数据比较多,会将分片A里面的一些块转移到分片B里面去。分片集群通过在分片中移动块来实现均衡,是由名为均衡器的软件进程管理的,任务是确保数据在各个分片中保持均匀分布,当集群中拥有块最多的分片与拥有块最少分片的块差大于8时,均衡器就会发起一次均衡处理。
启动两个副本集、三个配置服务器、一个mongos进程
配置分片
(1)分片查询类型
(2)索引
分片集合只允许在_id字段和分片键上添加唯一性索引,其他地方不行,因为这需要在分片间进行通信,实施起来很复杂。
当创建分片时,会根据分片键创建一个索引。
(1)分片键是不可修改的、分片键的选择非常重要
(2)低效的分片键
(3)理想的分片键
(1)部署拓扑
根据不同的数据中心划分
这里写图片描述
(2)最低要求
(3)配置的注意事项
需要估计集群大小,可使用以下命令对现有集合进行分片处理
(4)备份分片集群
备份分片时需要停止均衡器
(1)部署架构
使用64位机器、32位机器会制约mongodb的内存,使其最大值为1.5GB
(2)cpu
mongodb 只有当索引和工作集都可放入内存时,才会遇到CPU瓶颈,CPU在mongodb使用中的作用是用来检索数据,如果看到CPU使用饱和的情况,可以通过查询慢查询日志,排查是不是查询的问题导致的,如果是可以通过添加索引来解决问题
mongodb写入数据时会使用到CPU,但是mongodb写入时间一次只用到一个核,如果有频繁的写入行为,可以通过分片来解决这个问题
(3)内存
大内存是mongodb的保障,如果工作集大小超过内存,将会导致性能下降,因为这将会增加数据加载入内存的动作
(4)硬盘
mongodb默认每60s会与磁盘强制同步一次,称为后台刷新,会产生I/O操作。在重启时mongodb会将磁盘里面的数据加载至内存,高速磁盘将会减少同步的时间
(5)文件系统
使用ext4 和 xfs 文件系统
禁用最后访问时间
(6)文件描述符
linux 默认文件描述符是1024,需要大额度的提升这个额度
(7)时钟
mongodb各个节点服务器之间使用ntp服务器
(1)绑定IP
启动时使用 - -bind_ip 命令
(2)身份验证
启动时使用 - -auth 命令
(3)副本集身份认证
使用keyFile,注意keyFile文件的权限必须是600,不然会启动不起来
(1)拓扑结构
搭建副本集至少需要两个节点,其中仲裁结点不需要有自己的服务器
(2)Journaling日志
写数据时会先写入日志,而此时的数据也不是直接写入硬盘,而是写入内存
但是Journaling日志会消耗内存,所以可以在主库上面关闭,在从库上面启动
可以单独为Journaling日志使用一块固态硬盘
在插入时,可以通过驱动确保Journaling插入后再反馈,但是会非常影响性能。
logpath 选项指定日志存储地址
-vvvvv 选项(v越多,输出越详细)
db.runCommand({logrotare:1}) 开启滚动日志
(1)serverStatus
这里写图片描述
(2)top
(3)db.currentOp()
动态展示mongodb活动数据
占用当前mongodb监听端口往上1000号的端口
(1)mongodump
把数据库内容导出成BSON文件,而mongorestore能读取并还原这些文件
(2)mongorestore
把导出的BSON文件还原到数据库
(3)备份原始数据文件
可以这么做,但是,操作之前需要进行锁库处理 db.runCommand({fsync:1,lock:true})
db.$cmd.sys.unlock.findOne() 请求解锁操作,但是数据库不会立刻解锁,需要使用db.currentOp()验证。
(1)修复
mongd --repair 修复所有数据库
db.runCommand({repairDatabase:1}) 修复单个数据库
修复就是根据Jourling文件读取和重写所有数据文件并重建各个索引
(2)压紧
压紧,会重写数据文件,并重建集合的全部索引,需要停机或者在从库上面运行,如果需要在主库上面运行,需要添加force参数 保证加写锁。
(1)监控磁盘状态
(2)为提升性能检查索引和查询
总的来说,扫描尽可能少的文档。
保证没有冗余的索引,冗余的索引会占用磁盘空间、消耗更多的内存,在每次写入时还需做更多工作
(3)添加内存
dataSize 数据大小 和 indexSize 索引大小,如果两者的和大于内存,那么将会影响性能。
storageSize超过dataSize 数据大小 两倍以上,就会因磁盘碎片而影响性能,需要压缩。