符合中小企业对网站设计、功能常规化式的企业展示型网站建设
本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...
商城网站建设因基本功能的需求不同费用上面也有很大的差别...
手机微信网站开发、微信官网、微信商城网站...
算出来有二个交点的,上面的是抛物线,下面是直线。交点比较好算的,将x=y平方带入下面的式子,会求出二个y值,二个y值分别对应二个x值,二个点都是交点哦
成都创新互联公司是一家业务范围包括IDC托管业务,雅安服务器托管、主机租用、主机托管,四川、重庆、广东电信服务器租用,成都电信服务器托管,成都网通服务器托管,成都服务器租用,业务范围遍及中国大陆、港澳台以及欧美等多个国家及地区的互联网数据服务公司。
把两个函数的解析式看作是关于X、Y的方程,将两个方程组成一个方程组,
解出这个方程组,则这个方程组的解就是这两个函数的交点坐标。
画函数的图像,都是经过列表、描点、连线三个步骤。
具体如下:
联立方程组,即y=3x-4=y=-3x+3即3x-4=-3x+3。
6x=7,x=7/6。
y=-1/2。
答案 交点(7/6,-1/2)。
首先要理解,函数是发生在集合之间的一种对应关系。然后,要理解发生在A、B之间的函数关系有且不止一个。最后,要重点理解函数的三要素。
函数的对应法则通常用解析式表示,但大量的函数关系是无法用解析式表示的,可以用图像、表格及其他形式表示。
在一个变化过程中,发生变化的量叫变量(数学中,变量为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。
把两个函数的y和等号去掉。让剩下的部分用一个等号连接起来。解出来的x就是横坐标。
再把x带入两个函数任意一个,解出来的y就是纵坐标。
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File name: parabolic
# Project name: parabolic_equation
"""
.. moduleauthor::
.. Module.. name parabolic of procjet parabolic_equation
"""
from sympy import *
import matplotlib.pyplot as plt
import numpy as np
def _filterComplex(inputvalue, description='inputvalue'):
try:
str(inputvalue).index('I')
except ValueError:
return False
else:
return True
def _checkBool(inputvalue, description='inputvalue'):
"""
:param inputvalue:
:param description:
:return:
"""
if not isinstance(inputvalue, bool):
raise TypeError(
'The {0} must be boolean. Given: {1!r}'.format(description, inputvalue))
def _checkNumerical(inputvalue, description='inputvalue'):
"""
:param inputvalue:
:param description:
:return:
"""
try:
inputvalue + 1
except TypeError:
raise TypeError(
'The {0} must be numerical. Given: {1!r}'.format(description, inputvalue))
def _drawTowPara(expr_1, expr_2, inputmin, inputmax ,step=0.1):
"""
:param expr_1:
:param expr_2:
:param inputmin:
:param inputmax:
:param step:
:param expr_1_evalwithY:
:param expr_2_evalwithY:
:return:
"""
_checkNumerical(inputmin, 'xmin')
_checkNumerical(inputmax, 'xmax')
_checkNumerical(step, 'step')
y1List = []
x1List = []
y2List = []
x2List = []
if expr_1.vertical is True:
x1List = np.arange(inputmin, inputmax, step)
for x in x1List:
y1List.append(expr_1.evaluates_Y(x))
else:
y1List = np.arange(inputmin, inputmax, step)
for y in y1List:
x1List.append(expr_1.evaluates_X(y))
if expr_2.vertical is True:
x2List = np.arange(inputmin, inputmax, step)
for x in x2List:
y2List.append(expr_2.evaluates_Y(x))
else:
y2List = np.arange(inputmin, inputmax, step)
for y in y2List:
x2List.append(expr_2.evaluates_X(y))
plt.plot(x1List, y1List, '+')
plt.plot(x2List, y2List, '-')
plt.show()
def _solveCrossing(expr_1, expr_2):
"""
:param expr_1:
:param expr_2:
:return:
"""
x = Symbol('x')
y = Symbol('y')
print "Given the first expression: {0!r}".format(expr_1.expr)
print "Given the first expression: {0!r}".format(expr_2.expr)
ResultList = solve([expr_1.expr, expr_2.expr], [x, y])
Complex = False
ResultListTrue = []
for i in range(0, (len(ResultList)),1):
if _filterComplex(ResultList[i][0], 'x') or _filterComplex(ResultList[i][1], 'y'):
Complex = True
else:
ResultListTrue.append(ResultList[i])
if len(ResultListTrue) == 0 and Complex:
print "Two hyperbolic do not intersect, and there is imaginary value."
elif len(ResultListTrue) == 1:
print "Two hyperbolic tangent.:"
print ResultListTrue
else:
print "Two hyperbolic intersection, and Points are:"
for iterm in ResultListTrue:
print iterm
class Parabolic():
"""
"""
def __init__(self, a, b, c, vertical=True):
"""
:return:
"""
_checkNumerical(a, 'a')
_checkNumerical(b, 'b')
_checkNumerical(c, 'c')
_checkBool(vertical, 'vertical')
self.a = a
self.b = b
self.c = c
self.vertical = vertical
self.y = Symbol('y')
self.x = Symbol('x')
self.xarray = []
self.yarray = []
if vertical is True:
self.expr = (self.x**2)*self.a + self.x*self.b + self.c
else:
self.expr = (self.y**2)*self.a + self.y*self.b + self.c
def __repr__(self):
"""
:return:
"""
if self.vertical is True:
return "The Equation look like: {0!r}".format(self.expr)
else:
return "The Equation look like: {0!r}".format(self.expr)
def evaluates_X(self, inputvalue):
"""
:param inputvalue:
:return:
"""
_checkNumerical(inputvalue, 'y')
return self.expr.subs(self.y, inputvalue)
def evaluates_Y(self, inputvalue):
"""
:param inputvalue:
:return:
"""
_checkNumerical(inputvalue, 'x')
return self.expr.subs(self.x, inputvalue)
def getArrays(self, inputmin, inputmax, step=1):
"""
:param inputmin:
:param inputmax:
:param step:
:return:
"""
_checkNumerical(inputmin, 'xmin')
_checkNumerical(inputmax, 'xmax')
_checkNumerical(step, 'step')
if self.vertical is True:
for x in range(inputmin, inputmax, step):
self.xarray.append(x)
self.yarray.append(self.evaluates_Y(x))
else:
for y in range(inputmin, inputmax, step):
self.yarray.append(y)
self.xarray.append(self.evaluates_X(y))
def drawPara(self, inputmin, inputmax, step=1):
"""
:param inputmin:
:param inputmax:
:param step:
:return:
"""
_checkNumerical(inputmin, 'xmin')
_checkNumerical(inputmax, 'xmax')
_checkNumerical(step, 'step')
yList = []
xList = []
if self.vertical is True:
xList = np.arange(inputmin, inputmax, step)
for x in xList:
yList.append(self.evaluates_Y(x))
else:
yList = np.arange(inputmin, inputmax, step)
for y in yList:
xList.append(self.evaluates_X(y))
plt.plot(xList, yList, '+')
plt.show()
if __name__ == '__main__':
pa1 = Parabolic(-5,3,6)
pa2 = Parabolic(-5,2,5, False)
print pa1
print pa2
_solveCrossing(pa1, pa2)
_drawTowPara(pa1, pa2, -10, 10, 0.1)
# 这就是你想要的,代码解决了你的大部分问题,可以求两条双曲线交点,或者直线与双曲线交#点,或者两直线交点. 不过定义双曲线时候使用的是一般式.也也尽可能做了测试,如果有#问题的话,追问吧