网创优客建站品牌官网
为成都网站建设公司企业提供高品质网站建设
热线:028-86922220
成都专业网站建设公司

定制建站费用3500元

符合中小企业对网站设计、功能常规化式的企业展示型网站建设

成都品牌网站建设

品牌网站建设费用6000元

本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...

成都商城网站建设

商城网站建设费用8000元

商城网站建设因基本功能的需求不同费用上面也有很大的差别...

成都微信网站建设

手机微信网站建站3000元

手机微信网站开发、微信官网、微信商城网站...

建站知识

当前位置:首页 > 建站知识

python对函数优化,python算法优化

python的用途和优点

python的用途:

在玉溪等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供网站设计、做网站 网站设计制作按需开发,公司网站建设,企业网站建设,成都品牌网站建设,全网营销推广,外贸网站建设,玉溪网站建设费用合理。

python也是一门程序语言。能写各种各样的程序。

优点:

1.支持OOP编程 从根本

上讲Python仍是一种面向对象的语言,支持多态、继承等高级概念,在Python里使用OOP十分容易 没有C++、Java那样复杂,但不必做Python下OOp高手,够用即可。 

2. 免费Python的使用是完全免费的,您可以从网络上免费下载、安装使用, Python上的其他程序包,也可下载安装使用。 Python的免费的同时又有很多的的社区对用户的提问提出快速的技术支持,学习和使用Python技术不再是一个人在战斗!

3. 可移植性 Python的实现是用ansi c编写的,可以运行在目前所有主流平台上,手机、pad上均可运行Python程序,其下的程序包也具有可移植性。

4. 功能强大 从特性的观点上看,Python是一个混合体,他丰富的工具集使得他介于传统的脚本语言和系统语言之间。

拓展资料:

设计定位

Python的设计哲学是"优雅"、"明确"、"简单"。因此,Perl语言中"总是有多种方法来做同一件事"的理念在Python开发者中通常是难以忍受的。Python开发者的哲学是"用一种方法,最好是只有一种方法来做一件事"。

在设计Python语言时,如果面临多种选择,Python开发者一般会拒绝花俏的语法,而选择明确的没有或者很少有歧义的语法。由于这种设计观念的差异,Python源代码通常被认为比Perl具备更好的可读性,并且能够支撑大规模的软件开发。这些准则被称为Python格言。在Python解释器内运行import this可以获得完整的列表。

Python开发人员尽量避开不成熟或者不重要的优化。一些针对非重要部位的加快运行速度的补丁通常不会被合并到Python内。所以很多人认为Python很慢。不过,根据二八定律,大多数程序对速度要求不高。在某些对运行速度要求很高的情况,Python设计师倾向于使用JIT技术,或者用使用C/C++语言改写这部分程序。可用的JIT技术是PyPy。

Python是完全面向对象的语言。函数、模块、数字、字符串都是对象。并且完全支持继承、重载、派生、多继承,有益于增强源代码的复用性。Python支持重载运算符和动态类型。相对于Lisp这种传统的函数式编程语言,Python对函数式设计只提供了有限的支持。有两个标准库(functools, itertools)提供了Haskell和Standard ML中久经考验的函数式程序设计工具。

虽然Python可能被粗略地分类为"脚本语言"(script language),但实际上一些大规模软件开发计划例如Zope、Mnet及BitTorrent,Google也广泛地使用它。Python的支持者较喜欢称它为一种高级动态编程语言,原因是"脚本语言"泛指仅作简单程序设计任务的语言,如shellscript、VBScript等只能处理简单任务的编程语言,并不能与Python相提并论。

Python本身被设计为可扩充的。并非所有的特性和功能都集成到语言核心。Python提供了丰富的API和工具,以便程序员能够轻松地使用C语言、C++、Cython来编写扩充模块。Python编译器本身也可以被集成到其它需要脚本语言的程序内。

因此,很多人还把Python作为一种"胶水语言"(glue language)使用。使用Python将其他语言编写的程序进行集成和封装。在Google内部的很多项目,例如Google Engine使用C++编写性能要求极高的部分,然后用Python或Java/Go调用相应的模块。

Python怎么做最优化

最优化

为什么要做最优化呢?因为在生活中,人们总是希望幸福值或其它达到一个极值,比如做生意时希望成本最小,收入最大,所以在很多商业情境中,都会遇到求极值的情况。

函数求根

这里「函数的根」也称「方程的根」,或「函数的零点」。

先把我们需要的包加载进来。import numpy as npimport scipy as spimport scipy.optimize as optimport matplotlib.pyplot as plt%matplotlib inline

函数求根和最优化的关系?什么时候函数是最小值或最大值?

两个问题一起回答:最优化就是求函数的最小值或最大值,同时也是极值,在求一个函数最小值或最大值时,它所在的位置肯定是导数为 0 的位置,所以要求一个函数的极值,必然要先求导,使其为 0,所以函数求根就是为了得到最大值最小值。

scipy.optimize 有什么方法可以求根?

可以用 scipy.optimize 中的 bisect 或 brentq 求根。f = lambda x: np.cos(x) - x # 定义一个匿名函数x = np.linspace(-5, 5, 1000) # 先生成 1000 个 xy = f(x) # 对应生成 1000 个 f(x)plt.plot(x, y); # 看一下这个函数长什么样子plt.axhline(0, color='k'); # 画一根横线,位置在 y=0

opt.bisect(f, -5, 5) # 求取函数的根0.7390851332155535plt.plot(x, y)plt.axhline(0, color='k')plt.scatter([_], [0], c='r', s=100); # 这里的 [_] 表示上一个 Cell 中的结果,这里是 x 轴上的位置,0 是 y 上的位置

求根有两种方法,除了上面介绍的 bisect,还有 brentq,后者比前者快很多。%timeit opt.bisect(f, -5, 5)%timeit opt.brentq(f, -5, 5)10000 loops, best of 3: 157 s per loopThe slowest run took 11.65 times longer than the fastest. This could mean that an intermediate result is being cached.10000 loops, best of 3: 35.9 s per loop

函数求最小化

求最小值就是一个最优化问题。求最大值时只需对函数做一个转换,比如加一个负号,或者取倒数,就可转成求最小值问题。所以两者是同一问题。

初始值对最优化的影响是什么?

举例来说,先定义个函数。f = lambda x: 1-np.sin(x)/xx = np.linspace(-20., 20., 1000)y = f(x)

当初始值为 3 值,使用 minimize 函数找到最小值。minimize 函数是在新版的 scipy 里,取代了以前的很多最优化函数,是个通用的接口,背后是很多方法在支撑。x0 = 3xmin = opt.minimize(f, x0).x # x0 是起始点,起始点最好离真正的最小值点不要太远plt.plot(x, y)plt.scatter(x0, f(x0), marker='o', s=300); # 起始点画出来,用圆圈表示plt.scatter(xmin, f(xmin), marker='v', s=300); # 最小值点画出来,用三角表示plt.xlim(-20, 20);

初始值为 3 时,成功找到最小值。

现在来看看初始值为 10 时,找到的最小值点。x0 = 10xmin = opt.minimize(f, x0).xplt.plot(x, y)plt.scatter(x0, f(x0), marker='o', s=300)plt.scatter(xmin, f(xmin), marker='v', s=300)plt.xlim(-20, 20);

由上图可见,当初始值为 10 时,函数找到的是局部最小值点,可见 minimize 的默认算法对起始点的依赖性。

那么怎么才能不管初始值在哪个位置,都能找到全局最小值点呢?

如何找到全局最优点?

可以使用 basinhopping 函数找到全局最优点,相关背后算法,可以看帮助文件,有提供论文的索引和出处。

我们设初始值为 10 看是否能找到全局最小值点。x0 = 10from scipy.optimize import basinhoppingxmin = basinhopping(f,x0,stepsize = 5).xplt.plot(x, y);plt.scatter(x0, f(x0), marker='o', s=300);plt.scatter(xmin, f(xmin), marker='v', s=300);plt.xlim(-20, 20);

当起始点在比较远的位置,依然成功找到了全局最小值点。

如何求多元函数最小值?

以二元函数为例,使用 minimize 求对应的最小值。def g(X): x,y = X return (x-1)**4 + 5 * (y-1)**2 - 2*x*yX_opt = opt.minimize(g, (8, 3)).x # (8,3) 是起始点print X_opt[ 1.88292611 1.37658521]fig, ax = plt.subplots(figsize=(6, 4)) # 定义画布和图形x_ = y_ = np.linspace(-1, 4, 100)X, Y = np.meshgrid(x_, y_)c = ax.contour(X, Y, g((X, Y)), 50) # 等高线图ax.plot(X_opt[0], X_opt[1], 'r*', markersize=15) # 最小点的位置是个元组ax.set_xlabel(r"$x_1$", fontsize=18)ax.set_ylabel(r"$x_2$", fontsize=18)plt.colorbar(c, ax=ax) # colorbar 表示颜色越深,高度越高fig.tight_layout()

画3D 图。from mpl_toolkits.mplot3d import Axes3Dfrom matplotlib import cmfig = plt.figure()ax = fig.gca(projection='3d')x_ = y_ = np.linspace(-1, 4, 100)X, Y = np.meshgrid(x_, y_)surf = ax.plot_surface(X, Y, g((X,Y)), rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False)cset = ax.contour(X, Y, g((X,Y)), zdir='z',offset=-5, cmap=cm.coolwarm)fig.colorbar(surf, shrink=0.5, aspect=5);

曲线拟合

曲线拟合和最优化有什么关系?

曲线拟合的问题是,给定一组数据,它可能是沿着一条线散布的,这时要找到一条最优的曲线来拟合这些数据,也就是要找到最好的线来代表这些点,这里的最优是指这些点和线之间的距离是最小的,这就是为什么要用最优化问题来解决曲线拟合问题。

举例说明,给一些点,找到一条线,来拟合这些点。

先给定一些点:N = 50 # 点的个数m_true = 2 # 斜率b_true = -1 # 截距dy = 2.0 # 误差np.random.seed(0)xdata = 10 * np.random.random(N) # 50 个 x,服从均匀分布ydata = np.random.normal(b_true + m_true * xdata, dy) # dy 是标准差plt.errorbar(xdata, ydata, dy, fmt='.k', ecolor='lightgray');

上面的点整体上呈现一个线性关系,要找到一条斜线来代表这些点,这就是经典的一元线性回归。目标就是找到最好的线,使点和线的距离最短。要优化的函数是点和线之间的距离,使其最小。点是确定的,而线是可变的,线是由参数值,斜率和截距决定的,这里就是要通过优化距离找到最优的斜率和截距。

点和线的距离定义如下:def chi2(theta, x, y): return np.sum(((y - theta[0] - theta[1] * x)) ** 2)

上式就是误差平方和。

误差平方和是什么?有什么作用?

误差平方和公式为:

误差平方和大,表示真实的点和预测的线之间距离太远,说明拟合得不好,最好的线,应该是使误差平方和最小,即最优的拟合线,这里是条直线。

误差平方和就是要最小化的目标函数。

找到最优的函数,即斜率和截距。theta_guess = [0, 1] # 初始值theta_best = opt.minimize(chi2, theta_guess, args=(xdata, ydata)).xprint(theta_best)[-1.01442005 1.93854656]

上面两个输出即是预测的直线斜率和截距,我们是根据点来反推直线的斜率和截距,那么真实的斜率和截距是多少呢?-1 和 2,很接近了,差的一点是因为有噪音的引入。xfit = np.linspace(0, 10)yfit = theta_best[0] + theta_best[1] * xfitplt.errorbar(xdata, ydata, dy, fmt='.k', ecolor='lightgray');plt.plot(xfit, yfit, '-k');

最小二乘(Least Square)是什么?

上面用的是 minimize 方法,这个问题的目标函数是误差平方和,这就又有一个特定的解法,即最小二乘。

最小二乘的思想就是要使得观测点和估计点的距离的平方和达到最小,这里的“二乘”指的是用平方来度量观测点与估计点的远近(在古汉语中“平方”称为“二乘”),“最小”指的是参数的估计值要保证各个观测点与估计点的距离的平方和达到最小。

关于最小二乘估计的计算,涉及更多的数学知识,这里不想详述,其一般的过程是用目标函数对各参数求偏导数,并令其等于 0,得到一个线性方程组。具体推导过程可参考斯坦福机器学习讲义 第 7 页。def deviations(theta, x, y): return (y - theta[0] - theta[1] * x)theta_best, ier = opt.leastsq(deviations, theta_guess, args=(xdata, ydata))print(theta_best)[-1.01442016 1.93854659]

最小二乘 leastsq 的结果跟 minimize 结果一样。注意 leastsq 的第一个参数不再是误差平方和 chi2,而是误差本身 deviations,即没有平方,也没有和。yfit = theta_best[0] + theta_best[1] * xfitplt.errorbar(xdata, ydata, dy, fmt='.k', ecolor='lightgray');plt.plot(xfit, yfit, '-k');

非线性最小二乘

上面是给一些点,拟合一条直线,拟合一条曲线也是一样的。def f(x, beta0, beta1, beta2): # 首先定义一个非线性函数,有 3 个参数 return beta0 + beta1 * np.exp(-beta2 * x**2)beta = (0.25, 0.75, 0.5) # 先猜 3 个 betaxdata = np.linspace(0, 5, 50)y = f(xdata, *beta)ydata = y + 0.05 * np.random.randn(len(xdata)) # 给 y 加噪音def g(beta): return ydata - f(xdata, *beta) # 真实 y 和 预测值的差,求最优曲线时要用到beta_start = (1, 1, 1)beta_opt, beta_cov = opt.leastsq(g, beta_start)print beta_opt # 求到的 3 个最优的 beta 值[ 0.25525709 0.74270226 0.54966466]

拿估计的 beta_opt 值跟真实的 beta = (0.25, 0.75, 0.5) 值比较,差不多。fig, ax = plt.subplots()ax.scatter(xdata, ydata) # 画点ax.plot(xdata, y, 'r', lw=2) # 真实值的线ax.plot(xdata, f(xdata, *beta_opt), 'b', lw=2) # 拟合的线ax.set_xlim(0, 5)ax.set_xlabel(r"$x$", fontsize=18)ax.set_ylabel(r"$f(x, \beta)$", fontsize=18)fig.tight_layout()

除了使用最小二乘,还可以使用曲线拟合的方法,得到的结果是一样的。beta_opt, beta_cov = opt.curve_fit(f, xdata, ydata)print beta_opt[ 0.25525709 0.74270226 0.54966466]

有约束的最小化

有约束的最小化是指,要求函数最小化之外,还要满足约束条件,举例说明。

边界约束def f(X): x, y = X return (x-1)**2 + (y-1)**2 # 这是一个碗状的函数x_opt = opt.minimize(f, (0, 0), method='BFGS').x # 无约束最优化

假设有约束条件,x 和 y 要在一定的范围内,如 x 在 2 到 3 之间,y 在 0 和 2 之间。bnd_x1, bnd_x2 = (2, 3), (0, 2) # 对自变量的约束x_cons_opt = opt.minimize(f, np.array([0, 0]), method='L-BFGS-B', bounds=[bnd_x1, bnd_x2]).x # bounds 矩形约束fig, ax = plt.subplots(figsize=(6, 4))x_ = y_ = np.linspace(-1, 3, 100)X, Y = np.meshgrid(x_, y_)c = ax.contour(X, Y, f((X,Y)), 50)ax.plot(x_opt[0], x_opt[1], 'b*', markersize=15) # 没有约束下的最小值,蓝色五角星ax.plot(x_cons_opt[0], x_cons_opt[1], 'r*', markersize=15) # 有约束下的最小值,红色星星bound_rect = plt.Rectangle((bnd_x1[0], bnd_x2[0]), bnd_x1[1] - bnd_x1[0], bnd_x2[1] - bnd_x2[0], facecolor="grey")ax.add_patch(bound_rect)ax.set_xlabel(r"$x_1$", fontsize=18)ax.set_ylabel(r"$x_2$", fontsize=18)plt.colorbar(c, ax=ax)fig.tight_layout()

不等式约束

介绍下相关理论,先来看下存在等式约束的极值问题求法,比如下面的优化问题。

目标函数是 f(w),下面是等式约束,通常解法是引入拉格朗日算子,这里使用 ββ 来表示算子,得到拉格朗日公式为

l 是等式约束的个数。

然后分别对 w 和ββ 求偏导,使得偏导数等于 0,然后解出 w 和βiβi,至于为什么引入拉格朗日算子可以求出极值,原因是 f(w) 的 dw 变化方向受其他不等式的约束,dw的变化方向与f(w)的梯度垂直时才能获得极值,而且在极值处,f(w) 的梯度与其他等式梯度的线性组合平行,因此他们之间存在线性关系。(参考《最优化与KKT条件》)

对于不等式约束的极值问题

常常利用拉格朗日对偶性将原始问题转换为对偶问题,通过解对偶问题而得到原始问题的解。该方法应用在许多统计学习方法中。有兴趣的可以参阅相关资料,这里不再赘述。def f(X): return (X[0] - 1)**2 + (X[1] - 1)**2def g(X): return X[1] - 1.75 - (X[0] - 0.75)**4x_opt = opt.minimize(f, (0, 0), method='BFGS').xconstraints = [dict(type='ineq', fun=g)] # 约束采用字典定义,约束方式为不等式约束,边界用 g 表示x_cons_opt = opt.minimize(f, (0, 0), method='SLSQP', constraints=constraints).xfig, ax = plt.subplots(figsize=(6, 4))x_ = y_ = np.linspace(-1, 3, 100)X, Y = np.meshgrid(x_, y_)c = ax.contour(X, Y, f((X, Y)), 50)ax.plot(x_opt[0], x_opt[1], 'b*', markersize=15) # 蓝色星星,没有约束下的最小值ax.plot(x_, 1.75 + (x_-0.75)**4, '', markersize=15)ax.fill_between(x_, 1.75 + (x_-0.75)**4, 3, color="grey")ax.plot(x_cons_opt[0], x_cons_opt[1], 'r*', markersize=15) # 在区域约束下的最小值ax.set_ylim(-1, 3)ax.set_xlabel(r"$x_0$", fontsize=18)ax.set_ylabel(r"$x_1$", fontsize=18)plt.colorbar(c, ax=ax)fig.tight_layout()

scipy.optimize.minimize 中包括了多种最优化算法,每种算法使用范围不同,详细参考官方文档。

Python 在编程语言中是什么地位?为什么很多大学不教 Python

python既可用于前端还可用于后端开发。

Python是一种计算机程序设计语言。是一种动态的、面向对象的脚本语言,最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越来越多被用于独立的、大型项目的开发。

Python在设计上坚持了清晰划一的风格,这使得Python成为一门易读、易维护,并且被大量用户所欢迎的、用途广泛的语言。

设计者开发时总的指导思想是,对于一个特定的问题,只要有一种最好的方法来解决就好了。

这在由Tim Peters写的Python格言(称为The Zen of Python)里面表述为:There should be one-- and preferably only one --obvious way to do it。

这正好和Perl语言(另一种功能类似的高级动态语言)的中心思想TMTOWTDI(There's More Than One Way To Do It)完全相反。

扩展资料:

Python的设计定位:

Python的设计哲学是“优雅”、“明确”、“简单”。因此,Perl语言中“总是有多种方法来做同一件事”的理念在Python开发者中通常是难以忍受的。

Python开发者的哲学是“用一种方法,最好是只有一种方法来做一件事”。在设计Python语言时,如果面临多种选择,Python开发者一般会拒绝花俏的语法,而选择明确的没有或者很少有歧义的语法。

由于这种设计观念的差异,Python源代码通常被认为比Perl具备更好的可读性,并且能够支撑大规模的软件开发。这些准则被称为Python格言。在Python解释器内运行import this可以获得完整的列表。

Python开发人员尽量避开不成熟或者不重要的优化。一些针对非重要部位的加快运行速度的补丁通常不会被合并到Python内。

所以很多人认为Python很慢。不过,根据二八定律,大多数程序对速度要求不高。在某些对运行速度要求很高的情况,Python设计师倾向于使用JIT技术,或者用使用C/C++语言改写这部分程序。可用的JIT技术是PyPy。

Python是完全面向对象的语言。函数、模块、数字、字符串都是对象。并且完全支持继承、重载、派生、多继承,有益于增强源代码的复用性。

Python支持重载运算符和动态类型。相对于Lisp这种传统的函数式编程语言,Python对函数式设计只提供了有限的支持。有两个标准库(functools, itertools)提供了Haskell和Standard ML中久经考验的函数式程序设计工具。

虽然Python可能被粗略地分类为“脚本语言”(script language),但实际上一些大规模软件开发计划例如Zope、Mnet及BitTorrent,Google也广泛地使用它。

Python的支持者较喜欢称它为一种高级动态编程语言,原因是“脚本语言”泛指仅作简单程序设计任务的语言,如shellscript、VBScript等只能处理简单任务的编程语言,并不能与Python相提并论。

参考资料来源:搜狗百科-Python

python函数的作用

python函数的作用是:

1、函数其实是把某个功能的代码封装到一个代码块中,用来为某个重复使用的功能做调用的一个代码块,可以称为一个函数的代码封装。可以在自定义函数的小括号中传入多个参数。

2、形参:在定义函数时,小括号中的参数名称。实参:在函数名称的小括号中,传入实际的值代替了形参的这个值。函数可以有返回值(使用return进行返回),也可以没有返回值。

3、形参可以当做函数内部的一个变量使用,往往只在函数内部进行使用,不影响函数外部的相同名称的变量。

4、在函数内部可以返回某个值。直接在函数内部退出来,而不再继续执行函数下面的代码。

更多关于python函数的作用,进入:查看更多内容

如何优化python 机器学习库中的函数

def do_POST(self):

mpath,margs=urllib.splitquery(self.path)

datas = self.rfile.read(int(self.headers['content-length']))

self.do_action(mpath, datas)

def do_action(self, path, args):

self.outputtxt(path + args )

def outputtxt(self, content):

#指定返回编码

enc = "UTF-8"

content = content.encode(enc)

f = io.BytesIO()

f.write(content)

f.seek(0)

self.send_response(200)

self.send_header("Content-type", "text/html; charset=%s" % enc)

self.send_header("Content-Length", str(len(content)))

self.end_headers()

shutil.copyfileobj(f,self.wfile)


分享标题:python对函数优化,python算法优化
地址分享:http://bjjierui.cn/article/dseggie.html

其他资讯