符合中小企业对网站设计、功能常规化式的企业展示型网站建设
本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...
商城网站建设因基本功能的需求不同费用上面也有很大的差别...
手机微信网站开发、微信官网、微信商城网站...
NoSQL(NoSQL
成都创新互联服务项目包括韩城网站建设、韩城网站制作、韩城网页制作以及韩城网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,韩城网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到韩城省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!
=
Not
Only
SQL
),意即“不仅仅是SQL”,是一项全新的数据库革命性运动,早期就有人提出,发展至2009年趋势越发高涨。NoSQL的拥护者们提倡运用非关系型的数据存储,相对于铺天盖地的关系型数据库运用,这一概念无疑是一种全新的思维的注入。
随着大数据的不断发展,非关系型的数据库现在成了一个极其热门的新领域,非关系数据库产品的发展非常迅速。现今的计算机体系结构在数据存储方面要有庞大的水平扩展性,而NoSQL也正是致力于改变这一现状。目前Google的
BigTable和Amazon
的Dynamo使用的就是NoSQL型数据库,本文介绍了10种出色的NoSQL数据库。
虽然NoSQL流行语火起来才短短一年的时间,但是不可否认,现在已经开始了第二代运动。尽管早期的堆栈代码只能算是一种实验,然而现在的系统已经更加的成熟、稳定。不过现在也面临着一个严酷的事实:技术越来越成熟——以至于原来很好的NoSQL数据存储不得不进行重写,也有少数人认为这就是所谓的2.0版本。这里列出一些比较知名的NoSQL工具,可以为大数据建立快速、可扩展的存储库。
给一个地址吧
1. 键值数据库
相关产品:Redis、Riak、SimpleDB、Chordless、Scalaris、Memcached
应用:内容缓存
优点:扩展性好、灵活性好、大量写操作时性能高
缺点:无法存储结构化信息、条件查询效率较低
使用者:百度云(Redis)、GitHub(Riak)、BestBuy(Riak)、Twitter(Ridis和Memcached)
2. 列族数据库
相关产品:BigTable、HBase、Cassandra、HadoopDB、GreenPlum、PNUTS
应用:分布式数据存储与管理
优点:查找速度快、可扩展性强、容易进行分布式扩展、复杂性低
使用者:Ebay(Cassandra)、Instagram(Cassandra)、NASA(Cassandra)、Facebook(HBase)
3. 文档数据库
相关产品:MongoDB、CouchDB、ThruDB、CloudKit、Perservere、Jackrabbit
应用:存储、索引并管理面向文档的数据或者类似的半结构化数据
优点:性能好、灵活性高、复杂性低、数据结构灵活
缺点:缺乏统一的查询语言
使用者:百度云数据库(MongoDB)、SAP(MongoDB)
4. 图形数据库
图形数据库-使用图作为数据模型来存储数据。
相关产品:Neo4J、OrientDB、InfoGrid、GraphDB
应用:大量复杂、互连接、低结构化的图结构场合,如社交网络、推荐系统等
优点:灵活性高、支持复杂的图形算法、可用于构建复杂的关系图谱
缺点:复杂性高、只能支持一定的数据规模
使用者:Adobe(Neo4J)、Cisco(Neo4J)、T-Mobile(Neo4J)
nosql数据库的四种类型如下:
1.key-value键值存储数据库:
相关产品: Redis、Riak、SimpleDB、Chordless、Scalaris、Memcached.
主要应用: 内容缓存,处理大量数据的高负载访问,也用于系统日志。
优点:查找速度快,大量操作时性能高。
2.列存储数据库:
相关产品: BigTable、HBase、Cassandra、HadoopDB、GreenPlum、PNUTS.
主要应用: 分布式数据的储存与管理。
优点:查找速度快,可扩展性强,容易进行分布式扩展。
缺点:功能相对局限。
3.文档型数据库
相关产品:MongoDB、CouchDB、ThruDB、CloudKit、Perservere、Jackrabbit.
主要应用: web应用,管理面向文档的数据或者类似的半结构化数据。
优点:数据结构灵活,表结构可变,复杂性低。
缺点:查询效率低,且缺乏统一的查询语言。
4.Graph图形数据库
相关产品: Neo4J、OrientDB、InfoGrid、GraphDB.
主要应用: 复杂,互连接,低结构化的图结构场合, 专注构建关系图谱。
优点: 利用图结构相关算法, 可用于构建复杂的关系图谱。
缺点: 复杂度高。