网创优客建站品牌官网
为成都网站建设公司企业提供高品质网站建设
热线:028-86922220
成都专业网站建设公司

定制建站费用3500元

符合中小企业对网站设计、功能常规化式的企业展示型网站建设

成都品牌网站建设

品牌网站建设费用6000元

本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...

成都商城网站建设

商城网站建设费用8000元

商城网站建设因基本功能的需求不同费用上面也有很大的差别...

成都微信网站建设

手机微信网站建站3000元

手机微信网站开发、微信官网、微信商城网站...

建站知识

当前位置:首页 > 建站知识

python分段函数图像,python做分段函数

数字图像处理Python实现图像灰度变换、直方图均衡、均值滤波

import CV2

在成都网站制作、成都网站设计、外贸营销网站建设中从网站色彩、结构布局、栏目设置、关键词群组等细微处着手,突出企业的产品/服务/品牌,帮助企业锁定精准用户,提高在线咨询和转化,使成都网站营销成为有效果、有回报的无锡营销推广。成都创新互联公司专业成都网站建设10年了,客户满意度97.8%,欢迎成都创新互联客户联系。

import copy

import numpy as np

import random

使用的是pycharm

因为最近看了《银翼杀手2049》,里面Joi实在是太好看了所以原图像就用Joi了

要求是灰度图像,所以第一步先把图像转化成灰度图像

# 读入原始图像

img = CV2.imread('joi.jpg')

# 灰度化处理

gray = CV2.cvtColor(img, CV2.COLOR_BGR2GRAY)

CV2.imwrite('img.png', gray)

第一个任务是利用分段函数增强灰度对比,我自己随便写了个函数大致是这样的

def chng(a):

if a 255/3:

b = a/2

elif a 255/3*2:

b = (a-255/3)*2 + 255/6

else:

b = (a-255/3*2)/2 + 255/6 +255/3*2

return b

rows = img.shape[0]

cols = img.shape[1]

cover = copy.deepcopy(gray)

for i in range(rows):

for j in range(cols):

cover[i][j] = chng(cover[i][j])

CV2.imwrite('cover.png', cover)

下一步是直方图均衡化

# histogram equalization

def hist_equal(img, z_max=255):

H, W = img.shape

# S is the total of pixels

S = H * W * 1.

out = img.copy()

sum_h = 0.

for i in range(1, 255):

ind = np.where(img == i)

sum_h += len(img[ind])

z_prime = z_max / S * sum_h

out[ind] = z_prime

out = out.astype(np.uint8)

return out

covereq = hist_equal(cover)

CV2.imwrite('covereq.png', covereq)

在实现滤波之前先添加高斯噪声和椒盐噪声(代码来源于网络)

不知道这个椒盐噪声的名字是谁起的感觉隔壁小孩都馋哭了

用到了random.gauss()

percentage是噪声占比

def GaussianNoise(src,means,sigma,percetage):

NoiseImg=src

NoiseNum=int(percetage*src.shape[0]*src.shape[1])

for i in range(NoiseNum):

randX=random.randint(0,src.shape[0]-1)

randY=random.randint(0,src.shape[1]-1)

NoiseImg[randX, randY]=NoiseImg[randX,randY]+random.gauss(means,sigma)

if NoiseImg[randX, randY] 0:

NoiseImg[randX, randY]=0

elif NoiseImg[randX, randY]255:

NoiseImg[randX, randY]=255

return NoiseImg

def PepperandSalt(src,percetage):

NoiseImg=src

NoiseNum=int(percetage*src.shape[0]*src.shape[1])

for i in range(NoiseNum):

randX=random.randint(0,src.shape[0]-1)

randY=random.randint(0,src.shape[1]-1)

if random.randint(0,1)=0.5:

NoiseImg[randX,randY]=0

else:

NoiseImg[randX,randY]=255

return NoiseImg

covereqg = GaussianNoise(covereq, 2, 4, 0.8)

CV2.imwrite('covereqg.png', covereqg)

covereqps = PepperandSalt(covereq, 0.05)

CV2.imwrite('covereqps.png', covereqps)

下面开始均值滤波和中值滤波了

就以n x n为例,均值滤波就是用这n x n个像素点灰度值的平均值代替中心点,而中值就是中位数代替中心点,边界点周围补0;前两个函数的作用是算出这个点的灰度值,后两个是对整张图片进行

#均值滤波模板

def mean_filter(x, y, step, img):

sum_s = 0

for k in range(x-int(step/2), x+int(step/2)+1):

for m in range(y-int(step/2), y+int(step/2)+1):

if k-int(step/2) 0 or k+int(step/2)+1 img.shape[0]

or m-int(step/2) 0 or m+int(step/2)+1 img.shape[1]:

sum_s += 0

else:

sum_s += img[k][m] / (step*step)

return sum_s

#中值滤波模板

def median_filter(x, y, step, img):

sum_s=[]

for k in range(x-int(step/2), x+int(step/2)+1):

for m in range(y-int(step/2), y+int(step/2)+1):

if k-int(step/2) 0 or k+int(step/2)+1 img.shape[0]

or m-int(step/2) 0 or m+int(step/2)+1 img.shape[1]:

sum_s.append(0)

else:

sum_s.append(img[k][m])

sum_s.sort()

return sum_s[(int(step*step/2)+1)]

def median_filter_go(img, n):

img1 = copy.deepcopy(img)

for i in range(img.shape[0]):

for j in range(img.shape[1]):

img1[i][j] = median_filter(i, j, n, img)

return img1

def mean_filter_go(img, n):

img1 = copy.deepcopy(img)

for i in range(img.shape[0]):

for j in range(img.shape[1]):

img1[i][j] = mean_filter(i, j, n, img)

return img1

完整main代码如下:

if __name__ == "__main__":

# 读入原始图像

img = CV2.imread('joi.jpg')

# 灰度化处理

gray = CV2.cvtColor(img, CV2.COLOR_BGR2GRAY)

CV2.imwrite('img.png', gray)

rows = img.shape[0]

cols = img.shape[1]

cover = copy.deepcopy(gray)

for i in range(rows):

for j in range(cols):

cover[i][j] = chng(cover[i][j])

CV2.imwrite('cover.png', cover)

covereq = hist_equal(cover)

CV2.imwrite('covereq.png', covereq)

covereqg = GaussianNoise(covereq, 2, 4, 0.8)

CV2.imwrite('covereqg.png', covereqg)

covereqps = PepperandSalt(covereq, 0.05)

CV2.imwrite('covereqps.png', covereqps)

meanimg3 = mean_filter_go(covereqps, 3)

CV2.imwrite('medimg3.png', meanimg3)

meanimg5 = mean_filter_go(covereqps, 5)

CV2.imwrite('meanimg5.png', meanimg5)

meanimg7 = mean_filter_go(covereqps, 7)

CV2.imwrite('meanimg7.png', meanimg7)

medimg3 = median_filter_go(covereqg, 3)

CV2.imwrite('medimg3.png', medimg3)

medimg5 = median_filter_go(covereqg, 5)

CV2.imwrite('medimg5.png', medimg5)

medimg7 = median_filter_go(covereqg, 7)

CV2.imwrite('medimg7.png', medimg7)

medimg4 = median_filter_go(covereqps, 7)

CV2.imwrite('medimg4.png', medimg4)

python编程这个怎么弄?

分段函数的代码用python实现如下:

x=eval(input('输入x的值:'))

if x!=0:

y=1/(2*x-1)

else:

y=0

print(y)

python将图像分割成两半

import os

import re

import sys

import time

import random

# add system headers here...

#导入cv模块

import cv2 as cv

#读取图像,支持 bmp、jpg、png、tiff 等常用格式

height = 0

length = 0

key = 0

picPath = "E:\\python3.4.0-amd\\project\\imageProcess\\tamamo.jpg"

if not os.path.exists(picPath):

print("picture not exists! exit!")

sys.exit()

srcImage = cv.imread(picPath)

if srcImage is None:

print("read picture failed! exit!")

sys.exit()

size = srcImage.shape

height = size[0]

length = size[1]

print("srcImage: height(%u) length(%u)"%(height,length))

#显示原图

#cv.imshow("srcImage",srcImage)

#创建窗口并显示图像

mid = int(length / 2)

leftImage = srcImage[0:height, 0:mid]

cv.namedWindow("leftImage",cv.WINDOW_NORMAL)

cv.resizeWindow("leftImage", mid, height)

cv.imshow("leftImage",leftImage)

rightIamge = srcImage[0:height, mid:length]

cv.namedWindow("rightIamge",cv.WINDOW_NORMAL)

cv.resizeWindow("rightIamge", mid, height)

cv.imshow("rightIamge",rightIamge)

cv.waitKey(0)

#释放窗口

cv.destroyAllWindows()

如何用python matplotlab 画出一个分段函数

几个绘图的例子,来自API手册:

1、最简单的图:

代码:

[python] view plain copy print?

#!/usr/bin/env python

import matplotlib.pyplot as plt

plt.plot([10, 20, 30])

plt.xlabel('tiems')

plt.ylabel('numbers')

plt.show()

如何用python编写一个求分段函数的值的程序

1、首先打开python的编辑器软件,编辑器的选择可以根据自己的喜好,之后准备好一个空白的python文件:

2、接着在空白的python文件上编写python程序,这里假设当x>1的时候,方程为根号下x加4,当x-1时,方程为5乘以x的平方加3。所以在程序的开始需要引入math库,方便计算平方和开方,之后在函数体重写好表达式就可以了,最后调用一下函数,将结果打印出来:

3、最后点击软件内的绿色箭头,运行程序,在下方可以看到最终计算的结果,以上就是python求分段函数的过程:


当前题目:python分段函数图像,python做分段函数
URL链接:http://bjjierui.cn/article/dsggdop.html

其他资讯