符合中小企业对网站设计、功能常规化式的企业展示型网站建设
本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...
商城网站建设因基本功能的需求不同费用上面也有很大的差别...
手机微信网站开发、微信官网、微信商城网站...
首先说说索引的 优点 :最大的好处无疑就是提高查询效率。有的索引还能保证数据的唯一性,比如唯一索引。
让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:域名与空间、虚拟空间、营销软件、网站建设、丰都网站维护、网站推广。
而它的 坏处 也很明显:索引也是文件,我们在创建索引时,也会创建额外的文件,所以会占用一些硬盘空间。其次,索引也需要维护,我们在增加删除数据的时候,索引也需要去变化维护。当一个表的索引多了以后,资源消耗是很大的,所以必须结合实际业务再去确定给哪些列加索引。
再说说索引的基本结构。一说到这里肯定会脱口而出:B+树!了解B+树前先要了解二叉查找树和二叉平衡树。 二叉查找树 :左节点比父节点小,右节点比父节点大,所以二叉查找树的中序遍历就是树的各个节点从小到大的排序。 二叉平衡树 :左右子树高度差不能大于1。B+树就是结合了它们的特点,当然,不一定是二叉树。
为什么要有二叉查找树的特点?? 因为查找效率快,二分查找在这种结构下,查找效率是很快的。 那为什么要有平衡树的特点呢? 试想,如果不维护一颗树的平衡性,当插入一些数据后,树的形态有可能变得很极端,比如左子树一个数据没有,而全在右子树上,这种情况下,二分查找和遍历有什么区别呢?而就是因为这些特点需要去维护,所以就有了上面提到的缺点,当索引很多后,反而增加了系统的负担。
接着说B+树。 它的结构如下 :
可以发现,叶子节点其实是一个 双向循环链表 ,这种结构的好处就是,在范围查询的时候,我只用找到一个数据,就可以直接返回剩余的数据了。比如找小于30的,只用找到30,其余的直接通过叶子节点间的指针就可以找到。再说说其他特点: 数据只存在于叶子节点 。当叶子节点满了,如果再添加数据,就会拆分叶子节点,父节点就多了个子节点。如果父节点的位置也满了,就会扩充高度,就是拆分父节点,如25 50 75拆分成:25为左子树,75为右子树,50变成新的头节点,此时B+树的高度变成了3。它们的扩充的规律如下表,Leaf Page是叶子节点,index Page是非叶子节点。
再说说B树 ,B树相比较B+树,它所有节点都存放数据,所以在查找数据时,B树有可能没到达叶子节点就结束了。再者,B树的叶子节点间不存在指针。
最后说说Hash索引 ,相较于B+树,Hash索引最大的优点就是查找数据快。但是Hash索引最大的问题就是不支持范围查询。试想,如果查询小于30的数据,hash函数是根据数据的值找到其对应的位置,谁又知道小于30的有哪几个数据。而B+树正好相反,范围查询是它的强项。
附录: Hash到底是啥?? 哈希中文名散列,哈希只是它的音译。 为啥都说Hash快?? 首先有一块哈希表(散列表),它的数据结构是个数组,一个任意长度的数据通过hash函数都可以变成一个固定长度的数据,叫hash值。然后通过hash值确定在数组中的位置,相同数据的hash值是相同的,所以我们存储一个数据以后,只需O(1)的时间复杂度就可以找到数据。 那hash函数又是啥?? 算术运算或位运算,很多应用里都有hash函数,但实际运算过程大不一样。这是Java里String的hashCode方法:
publicint hashCode() {
}
还有一个问题,hash函数计算出来的hash值有可能存在碰撞,即两个不同的数据可能存在相同的hash值,在MySQL或其他的应用中,如Java的HashMap等,如果存在碰撞就会以当前数组位置为头节点,转变成一个链表。
说到这里也清楚了为啥Java中引用类型要同时重写hashCode和equals了。两个对象,实例就算一模一样,它们的hash值也不相等, 为啥不相等?? 默认的Object的hashCode方法会根据对象来计算hash值的,实例相同,但它们还是两个不同的对象啊,所以我们重写hashCode时,最简单的方法就是调用Object的hashCode方法,然后传入该引用类型的属性,让hashCode方法只根据这几个属性来计算,那么实例相同的话,它们的hash值也会相等。等hashCode比较完后,如果相等再比较实例内容,也就是equals,确保不是hash碰撞。
索引的分类
如果我们指定了一个主键,那么这个主键就是主键索引。如果我们没有指定,Mysql就会自动找一个非空的唯一索引当主键。如果没有这种字段,Mysql就会创建一个大小为6字节的自增主键。如果有多个非空的唯一索引,那么就让第一个定义为唯一索引的字段当主键,注意,是第一个定义,而不是建表时出现在前面的。
对于辅助索引来说,它们的B+树结构稍微有点特殊,它们的叶子节点存储的是主键,而不是整个数据。所以在大部分情况下,使用辅助索引查找数据,需要二次查找。但并不是所有情况都需要二次查找。比如查找的数据正好就是当前索引字段的值,那么直接返回就行。这里提一句,B+树的key就是对应索引字段的内容。
而辅助索引又有一些分类:唯一索引:不能出现重复的值,也算一种约束。普通索引:可以重复、可以为空,一般就是查询时用到。前缀索引:只适用于字符串类型数据,对字符串前几个字符创建索引。全文索引:作用是检测大文本数据中某个关键字,这也是搜索引擎的一种技术。
注意,聚集索引、非聚集索引和前面几个索引的分类并不是一个层面上的。上面的几个分类是从索引的作用来分析的。聚集、非聚集索引是从索引文件上区分的。主键索引就属于聚集索引,即索引和数据存放在一起,叶子节点存放的就是数据。数据表的.idb文件就是存放该表的索引和数据。
辅助索引属于非聚集索引,说到这也就明白了。索引和数据不存放在一起的就是非聚集索引。在MYISAM引擎中,数据表的.MYI文件包含了表的索引, 该表的 叶子节点存储索引和索引对应数据的指针,指向.MYD文件的数据。
索引的几点使用经验
经常被查询的字段;经常作为条件查询的字段;经常用于外键连接或普通的连表查询时进行相等比较字段;不为null的字段;如果是多条件查询,最好创建联合索引,因为联合索引只有一个索引文件。
经常被更新的字段、不经常被查询的字段、存在相同功能的字段
字符串创建索引方式:
1、直接创建完整索引,比较占用空间。
2、创建前缀索引,节省空间,但会增加查询扫描次数,并且不能使用覆盖索引。
3、倒序存储,在创建前缀索引,用于绕过字符串本身前缀的却分度不够的问题。
4、创建hash字段索引,查询性能稳定,有额外的存储和计算消耗。
倒序存储和hash字段索引都不支持范围查询。倒序存储的字段上创建的所有是按照倒序字符串的方式排序的。hash字段的方式也只能支持等值查询。
mysql alter table SUser add index index1(email); :包含了每个记录的整个字符串
或
mysql alter table SUser add index index2(email(6)); :-对于每个记录只取前6个字节
全字段索引操作流程
使用的是 index1(即 email 整个字符串的索引结构),执行顺序是这样的:
1、从 index1 索引树找到满足索引值是’ zhangssxyz@xxx.com ’的这条记录,取得 ID2 的值;
2、到主键上查到主键值是 ID2 的行,判断 email 的值是正确的,将这行记录加入结果集;
3、取 index1 索引树上刚刚查到的位置的下一条记录,发现已经不满足 email=' zhangssxyz@xxx.com ’的条件了,循环结束。
前缀字段索引操作流程
如果使用的是 index2(即 email(6) 索引结构),执行顺序是这样的:
1、从 index2 索引树找到满足索引值是’zhangs’的记录,找到的第一个是 ID1;
2、到主键上查到主键值是 ID1 的行,判断出 email 的值不是’ zhangssxyz@xxx.com ’,这行记录丢弃;
3、取 index2 上刚刚查到的位置的下一条记录,发现仍然是’zhangs’,取出 ID2,再到 ID 索引上取整行然后判断,这次值对了,将这行记录加入结果集;
4、重复上一步,直到在 idxe2 上取到的值不是’zhangs’时,循环结束。
倒序查询和hash字段的区别
它们的区别,主要体现在以下三个方面:
1、从占用的额外空间来看,倒序存储方式在主键索引上,不会消耗额外的存储空间,而 hash 字段方法需要增加一个字段。当然,倒序存储方式使用 4 个字节的前缀长度应该是不够的,如果再长一点,这个消耗跟额外这个 hash 字段也差不多抵消了。
2、在 CPU 消耗方面,倒序方式每次写和读的时候,都需要额外调用一次 reverse 函数,而 hash 字段的方式需要额外调用一次 crc32() 函数。如果只从这两个函数的计算复杂度来看的话,reverse 函数额外消耗的 CPU 资源会更小些。
3、从查询效率上看,使用 hash 字段方式的查询性能相对更稳定一些。因为 crc32 算出来的值虽然有冲突的概率,但是概率非常小,可以认为每次查询的平均扫描行数接近 1。而倒序存储方式毕竟还是用的前缀索引的方式,也就是说还是会增加扫描行数。
1.添加PRIMARY KEY(主键索引) mysqlALTER TABLE `table_name` ADD PRIMARY KEY ( `column` ) 2.添加UNIQUE(唯一索引) mysqlALTER TABLE `table_name` ADD UNIQUE ( `column` ) 3.添加INDEX(普通索引) mysqlALTER TABLE `table_name` ADD INDEX index_name ( `column` ) 4.添加FULLTEXT(全文索引) mysqlALTER TABLE `table_name` ADD FULLTEXT ( `column`) 5.添加多列索引 mysqlALTER TABLE `table_name` ADD INDEX index_name ( `column1`, `column2`, `column3` )
索引用于快速找到特定一些值的记录。如果没有索引,MySQL就必须从第一行记录开始读取整个表来检索记录。表越大,资源消耗越大。如果在字段上有索引的话,MySQL就能很快决定该从数据文件的哪个位置开始搜索记录,而无须查找所有的数据。如果表中有1000条记录的话,那么这至少比顺序地读取数据快100倍。注意,如果需要存取几乎全部1000条记录的话,那么顺序读取就更快了,因为这样会使磁盘搜索最少。
大部分MySQL索引(PRIMARY KEY, UNIQUE,INDEX 和 FULLTEXT)都是以B树方式存储。只有空间类型的字段使用R树存储,MEMORY (HEAP)表支持哈希索引。
字符串默认都是自动压缩前缀和后缀中的空格。
通常,如下所述几种情况下可以使用索引。哈希索引(用于 MEMORY 表)的独特之处在后面会讨论到。
想要尽快找到匹配 WHERE 子句的记录。
根据条件排除记录。如果有多个索引可共选择的话,MySQL通常选择能找到最少记录的那个索引。
做表连接查询时从其他表中检索记录。
想要在指定的索引字段 key_col 上找到它的 MIN() 或 MAX() 值。优化程序会在检查索引的
key_col 字段前就先检查其他索引部分是否使用了 WHERE key_part_# = constant 子句。这样的话,
MySQL会为 MIN() 或 MAX() 表达式分别单独做一次索引查找,并且将它替换成常数。当所有的表达式都被替换成常数后,查询就立刻返回。如下:
SELECT MIN(key_part2),MAX(key_part2) FROM tbl_name WHERE key_part1=10;
对表作排序或分组,当在一个可用的最左前缀索引上做分组或排序时(如 ORDER
BY key_part1, key_part2)。如果所有的索引部分都按照 DESC 排序,索引就按倒序排序。
有些时候,查询可以优化使得无需计算数据就能直接取得结果。当查询使用表中的一个数字型字段,且这个字段是索引的最左部分,则可能从索引树中能很快就取得结果:
SELECTkey_part3FROMtbl_nameWHEREkey_part1=1
假设有如下 SELECT 语句:
如果在 col1 和 col2 上有一个多字段索引的话,就能直接取得对应的记录了。