网创优客建站品牌官网
为成都网站建设公司企业提供高品质网站建设
热线:028-86922220
成都专业网站建设公司

定制建站费用3500元

符合中小企业对网站设计、功能常规化式的企业展示型网站建设

成都品牌网站建设

品牌网站建设费用6000元

本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...

成都商城网站建设

商城网站建设费用8000元

商城网站建设因基本功能的需求不同费用上面也有很大的差别...

成都微信网站建设

手机微信网站建站3000元

手机微信网站开发、微信官网、微信商城网站...

建站知识

当前位置:首页 > 建站知识

怎么在python中使用fuzzywuzzy模块模糊字符串-创新互联

这篇文章将为大家详细讲解有关怎么在python中使用fuzzywuzzy模块模糊字符串,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。

罗平网站建设公司成都创新互联公司,罗平网站设计制作,有大型网站制作公司丰富经验。已为罗平上1000家提供企业网站建设服务。企业网站搭建\外贸营销网站建设要多少钱,请找那个售后服务好的罗平做网站的公司定做!

导入:

>>> from fuzzywuzzy import fuzz
>>> from fuzzywuzzy import process

1)

>>> fuzz.ratio("this is a test", "this is a test!")
out 97
>>> fuzz.partial_ratio("this is a test", "this is a test!")
out 100

fuzz.ratio()对位置敏感,全匹配。fuzz.partial_ratio()对位置敏感,搜索匹配。

2)

>>> fuzz._process_and_sort(s, force_ascii, full_process=True)

对字符串s排序。force_ascii:True 或者False。为True表示转换为ascii码。如果full_process为True,则会将字符串s转换为小写,去掉除字母和数字之外的字符(发现不能去掉-字符),剩下的字符串以空格分开,然后排序。如果为False,则直接对字符串s排序。

>>> fuzz._token_sort(s1, s2, partial=True, force_ascii=True, full_process=True)

给出字符串 s1, s2的相似度。首先经过 fuzz._process_and_sort()函数处理。partial为True时,再经过fuzz.partial_ratio()函数。partial为False时,再经过fuzz.ratio()函数。

>>> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
out 100

partial为False的_token_sort()

fuzz.partial_token_sort_ratio(s1, s2, force_ascii=True, full_process=True)

就是partial为True时的Fuzz._token_sort()

3)

>>> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
out 100
fuzz._token_set(s1, s2, partial=True, force_ascii=True, full_process=True)

当partial为False时,就是 fuzz.token_set_ratio()函数。

fuzz.partial_token_set_ratio(s1, s2, force_ascii=True, full_process=True)

partial为True的fuzz._token_set()函数。

4)

fuzz.QRatio(s1, s2, force_ascii=True, full_process=True)

full_process为True时,经过utils.full_process()函数。然后经过fuzz.ratio()函数。对顺序敏感。

fuzz.UQRatio(s1, s2, full_process=True)

就是 force_ascii为False的fuzz.QRatio()函数。

fuzz.WRatio(s1, s2, force_ascii=True, full_process=True)

使用另一种不同算法计算相似度。对顺序敏感。

UWRatio(s1, s2, full_process=True)

是force_ascii为False的fuzz.WRatio()函数。

总结:如果计算相似度的字符串只有字母和数字,直接可以用ratio()和partial_ratio()。但如果还有其他字符,而且我们想要去掉这些没用字符,就用下边的。下边的函数都对顺序不敏感,但token_sort_ratio()系列是全字符匹配,不管顺序。而token_set_ratio()只要第二个字符串包含第一个字符串就100,不管顺序。

5)

>>> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
>>> process.extract("new york jets", choices, limit=2)
 [('New York Jets', 100), ('New York Giants', 78)]
>>> process.extractOne("cowboys", choices)
 ("Dallas Cowboys", 90)
>>> process.extract(query, choices, processor=default_processor, scorer=default_scorer, limit=5)

query是字符串,choices是数组,元素是字符串。 processor是对输入比较的字符串的处理函数,默认是fuzzywuzzy.utils.full_process(),即将字符串变为小写, 去掉除字母和数字之外的字符(发现不能去掉-字符),剩下的字符串以空格分开。scorer计算两个字符串相似度的函数,默认fuzz.WRatio()。 limit是输出个数。

输出为数组,元素为元组,元祖第一个匹配到的字符串,第二个为int型,为score。对输出按照score排序。

>>> process.extractWithoutOrder(query, choices, processor=default_processor, scorer=default_scorer, score_cutoff=0)

score_cutoff为一个阈值,当score小于该阈值时,不会输出。返回一个生成器,输出每个大于 score_cutoff的匹配,按顺序输出,不排序。

>>> process.extractBests(query, choices, processor=default_processor, scorer=default_scorer, score_cutoff=0, limit=5)

process.extractBests()和process.extract()都调用了process.extractWithoutOrder(),只不过process.extractBests()能传输 score_cutoff。

>>> process.extractOne(query, choices, processor=default_processor, scorer=default_scorer, score_cutoff=0)

也调用了process.extractWithoutOrder(),只不过输出一个score最高的值。

process.dedupe(contains_dupes, threshold=70, scorer=fuzz.token_set_ratio)

contains_dupes是数组,元素为字符串。

取出相似度小于 threshold的字符串,相似度大于 threshold的字符串取最长一个。

关于怎么在python中使用fuzzywuzzy模块模糊字符串就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


当前名称:怎么在python中使用fuzzywuzzy模块模糊字符串-创新互联
路径分享:http://bjjierui.cn/article/dssoij.html

其他资讯