符合中小企业对网站设计、功能常规化式的企业展示型网站建设
本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...
商城网站建设因基本功能的需求不同费用上面也有很大的差别...
手机微信网站开发、微信官网、微信商城网站...
这篇文章将为大家详细讲解有关基于python历史天气采集的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
创新互联公司云计算的互联网服务提供商,拥有超过13年的服务器租用、绵阳服务器托管、云服务器、虚拟主机、网站系统开发经验,已先后获得国家工业和信息化部颁发的互联网数据中心业务许可证。专业提供云主机、虚拟主机、主机域名、VPS主机、云服务器、香港云服务器、免备案服务器等。分析历史天气的趋势。
先采集
代码:
#-*- coding:utf-8 -*- import requests import random import MySQLdb import xlwt from bs4 import BeautifulSoup user_agent=['Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.87 Safari/537.36', 'Mozilla/5.0 (X11; U; Linux x86_64; zh-CN; rv:1.9.2.10) Gecko/20100922 Ubuntu/10.10 (maverick) Firefox/3.6.10', 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11', 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/30.0.1599.101 Safari/537.36', 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.71 Safari/537.1 LBBROWSER', 'Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E; QQBrowser/7.0.3698.400)', ] headers={ 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8', 'Accept-Encoding': 'gzip, deflate, sdch', 'Accept-Language': 'zh-CN,zh;q=0.8', 'User-Agent': user_agent[random.randint(0,5)]} myfile=xlwt.Workbook() wtable=myfile.add_sheet(u"历史天气",cell_overwrite_ok=True) wtable.write(0,0,u"日期") wtable.write(0,1,u"最高温度") wtable.write(0,2,u"最低温度") wtable.write(0,3,u"天气") wtable.write(0,4,u"风向") wtable.write(0,5,u"风力") db = MySQLdb.connect('localhost','root','liao1234','liao',charset='utf8') cursor = db.cursor() index = requests.get("http://lishi.tianqi.com/binjianqu/index.html",headers=headers) html_index = index.text index_soup = BeautifulSoup(html_index) i = 1 for href in index_soup.find("div",class_="tqtongji1").find_all("a"): print href.attrs["href"] url = href.attrs["href"] r = requests.get(url,headers = headers) html = r.text #print html soup = BeautifulSoup(html) ss = [] s = [] for tag in soup.find("div",class_="tqtongji2").find_all("li"): print tag.string s.append(tag.string) if len(s) == 6: ss.append(s) s = [] flag = 0 for s in ss: if flag == 0: flag = 1 continue else: sql = "insert into weather(old_date,hight,low,weather,wind,wind_power) values('%s','%s','%s','%s','%s','%s')"%(s[0],s[1],s[2],s[3],s[4],s[5]) cursor.execute(sql) wtable.write(i,0,s[0]) wtable.write(i,1,s[1]) wtable.write(i,2,s[2]) wtable.write(i,3,s[3]) wtable.write(i,4,s[4]) wtable.write(i,5,s[5]) i += 1 myfile.save("weather.xls") db.close()
关于“基于python历史天气采集的示例分析”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。