符合中小企业对网站设计、功能常规化式的企业展示型网站建设
本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...
商城网站建设因基本功能的需求不同费用上面也有很大的差别...
手机微信网站开发、微信官网、微信商城网站...
这篇文章主要讲解了“C++怎么解决不同的子序列问题”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“C++怎么解决不同的子序列问题”吧!
专注于为中小企业提供成都做网站、网站制作服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业洪山免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了超过千家企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。
Example 1:
Input: S =
"rabbbit"
, T =
"rabbit"
Output: 3
Explanation:
As shown below, there are 3 ways you can generate "rabbit" from S.
(The caret symbol ^ means the chosen letters)
rabbbit
^^^^ ^^
rabbbit
^^ ^^^^
rabbbit
^^^ ^^^
Example 2:
Input: S =
"babgbag"
, T =
"bag"
Output: 5
Explanation:
As shown below, there are 5 ways you can generate "bag" from S.
(The caret symbol ^ means the chosen letters)
babgbag
^^ ^
babgbag
^^ ^
babgbag
^ ^^
babgbag
^ ^^
babgbag
^^^
看到有关字符串的子序列或者配准类的问题,首先应该考虑的就是用动态规划 Dynamic Programming 来求解,这个应成为条件反射。而所有 DP 问题的核心就是找出状态转移方程,想这道题就是递推一个二维的 dp 数组,其中 dp[i][j] 表示s中范围是 [0, i] 的子串中能组成t中范围是 [0, j] 的子串的子序列的个数。下面我们从题目中给的例子来分析,这个二维 dp 数组应为:
Ø r a b b b i t
Ø 1 1 1 1 1 1 1 1
r 0 1 1 1 1 1 1 1
a 0 0 1 1 1 1 1 1
b 0 0 0 1 2 3 3 3
b 0 0 0 0 1 3 3 3
i 0 0 0 0 0 0 3 3
t 0 0 0 0 0 0 0 3
首先,若原字符串和子序列都为空时,返回1,因为空串也是空串的一个子序列。若原字符串不为空,而子序列为空,也返回1,因为空串也是任意字符串的一个子序列。而当原字符串为空,子序列不为空时,返回0,因为非空字符串不能当空字符串的子序列。理清这些,二维数组 dp 的边缘便可以初始化了,下面只要找出状态转移方程,就可以更新整个 dp 数组了。我们通过观察上面的二维数组可以发现,当更新到 dp[i][j] 时,dp[i][j] >= dp[i][j - 1] 总是成立,再进一步观察发现,当 T[i - 1] == S[j - 1] 时,dp[i][j] = dp[i][j - 1] + dp[i - 1][j - 1],若不等, dp[i][j] = dp[i][j - 1],所以,综合以上,递推式为:
dp[i][j] = dp[i][j - 1] + (T[i - 1] == S[j - 1] ? dp[i - 1][j - 1] : 0)
根据以上分析,可以写出代码如下:
class Solution { public: int numDistinct(string s, string t) { int m = s.size(), n = t.size(); vector> dp(n + 1, vector (m + 1)); for (int j = 0; j <= m; ++j) dp[0][j] = 1; for (int i = 1; i <= n; ++i) { for (int j = 1; j <= m; ++j) { dp[i][j] = dp[i][j - 1] + (t[i - 1] == s[j - 1] ? dp[i - 1][j - 1] : 0); } } return dp[n][m]; } };
感谢各位的阅读,以上就是“C++怎么解决不同的子序列问题”的内容了,经过本文的学习后,相信大家对C++怎么解决不同的子序列问题这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!