符合中小企业对网站设计、功能常规化式的企业展示型网站建设
本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...
商城网站建设因基本功能的需求不同费用上面也有很大的差别...
手机微信网站开发、微信官网、微信商城网站...
这篇文章主要介绍了如何解决Linux中Tensorflow2.0安装的问题,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。
创新互联公司长期为成百上千家客户提供的网站建设服务,团队从业经验10年,关注不同地域、不同群体,并针对不同对象提供差异化的产品和服务;打造开放共赢平台,与合作伙伴共同营造健康的互联网生态环境。为天涯企业提供专业的成都网站设计、网站建设,天涯网站改版等技术服务。拥有十年丰富建站经验和众多成功案例,为您定制开发。
conda update conda pip install tf-nightly-gpu-2.0-preview conda install https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/cudnn-7.3.1-cuda10.0_0.tar.bz2 conda install https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/cudatoolkit-10.0.130-0.tar.bz2
说明:
首先需要更新conda
安装的是tf2.0最新版
cudnn7.3.1和cudatoolkit-10.0版本,可以下载下来本地安装
wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/cudnn-7.3.1-cuda10.0_0.tar.bz2 conda install cudnn-7.3.1-cuda10.0_0.tar.bz2
出现的错误及解决方案
旧库问题
ERROR: Cannot uninstall 'wrapt'. It is a distutils installed project and thus we cannot accurately determine which files belong to it which would lead to only a partial uninstall.
旧版本依赖多,不能清晰的删除,此时应该忽略旧版本升级,即如下 解决办法: pip install tf-nightly-gpu-2.0-preview --ignore-installed wrapt
numpy版本问题
还有一个问题是说numpy存在旧版本,可以使用pip卸载numpy,直到提示没有可卸载的为止,然后重新安装numpy
驱动问题
tensorflow.python.framework.errors_impl.InternalError: cudaGetDevice() failed. Status: CUDA driver version is insufficient for CUDA runtime version
这是因为驱动版本不匹配导致的,可以到NVIDIA官网下载cuda10.0(和上面的一致)的驱动
安装命令: https://juejin.im/post/5cce44e3f265da036902a89c
,然后一路确定,最后使用 watch nvidia-smi
查看结果:
测试及其他
测试可用:
import tensorflow as tf print(tf.__version__) print(tf.keras.__version__) if tf.test.is_gpu_available(): device = "/gpu:0" else: device = "/cpu:0" print(device)
减少tensorflow输出信息
TensorFlow的log信息共有四个等级,按重要性递增为:INFO(通知) 或者 tensorflow2.0在pycharm下提示问题 tensorflow2.0 使用keras一般通过tensorflow.keras来使用,但是pycharm没有提示,原因是因为实际的keras路径放在tensorflow/python/keras,但是在程序中tensorflow有没有python这个目录,解决方法如下: 这样pycharm既可以有提示,同时也不需要在程序运行的时候修改代码了。 感谢你能够认真阅读完这篇文章,希望小编分享的“如何解决Linux中Tensorflow2.0安装的问题”这篇文章对大家有帮助,同时也希望大家多多支持创新互联,关注创新互联行业资讯频道,更多相关知识等着你来学习!tf.compat.v1.logging.set_verbosity('ERROR')
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
try:
import tensorflow.python.keras as keras
except:
import tensorflow.keras as keras
分享名称:如何解决Linux中Tensorflow2.0安装的问题
网站路径:http://bjjierui.cn/article/gociss.html