符合中小企业对网站设计、功能常规化式的企业展示型网站建设
本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...
商城网站建设因基本功能的需求不同费用上面也有很大的差别...
手机微信网站开发、微信官网、微信商城网站...
本篇内容主要讲解“MySQL性能瓶颈排查定位怎么解决”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“MySQL性能瓶颈排查定位怎么解决”吧!
成都创新互联公司专业提供达州主机托管服务,为用户提供五星数据中心、电信、双线接入解决方案,用户可自行在线购买达州主机托管服务,并享受7*24小时金牌售后服务。
收到线上某业务后端的MySQL实例负载比较高的告警信息,于是登入服务器检查确认。 1. 首先我们进行OS层面的检查确认 登入服务器后,我们的目的是首先要确认当前到底是哪些进程引起
收到线上某业务后端的MySQL实例负载比较高的告警信息,于是登入服务器检查确认。 1. 首先我们进行OS层面的检查确认登入服务器后,我们的目的是首先要确认当前到底是哪些进程引起的负载高,以及这些进程卡在什么地方,瓶颈是什么。 通常来说, 服务器上最容易成为瓶颈的是磁盘I/O子系统 ,因为它的读写速度通常是最慢的。即便是现在的PCIe SSD,其随机I/O读写速度也是不如内存来得快。当然了,引起磁盘I/O慢得原因也有多种,需要确认哪种引起的。 第一步,我们一般先看整体负载如何,负载高的话,肯定所有的进程跑起来都慢。 可以执行指令 w 或者 sar -q 1 来查看负载数据,例如: [yejr@imysql.com:~ ]# w 11:52:58 up 702 days, 56 min, 1 user, load average: 7.20, 6.70, 6.47 USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT root pts/0 1.xx.xx.xx 11:51 0.00s 0.03s 0.00s w 或者 sar -q 的观察结果: [yejr@imysql.com:~ ]# sar -q 1 Linux 2.6.32-431.el6.x86_64 (yejr.imysql.com) 01/13/2016 _x86_64_ (24 CPU) 02:51:18 PM runq-sz plist-sz ldavg-1 ldavg-5 ldavg-15 blocked 02:51:19 PM 4 2305 6.41 6.98 7.12 3 02:51:20 PM 2 2301 6.41 6.98 7.12 4 02:51:21 PM 0 2300 6.41 6.98 7.12 5 02:51:22 PM 6 2301 6.41 6.98 7.12 8 02:51:23 PM 2 2290 6.41 6.98 7.12 8 load average大意表示当前CPU中有多少任务在排队等待,等待越多说明负载越高,跑数据库的服务器上,一般load值超过5的话,已经算是比较高的了。 引起load高的原因也可能有多种:
这时我们可以执行下面的命令来判断到底瓶颈在哪个子系统: [yejr@imysql.com:~ ]# top top - 11:53:04 up 702 days, 56 min, 1 user, load average: 7.18, 6.70, 6.47 Tasks: 576 total, 1 running, 575 sleeping, 0 stopped, 0 zombie Cpu(s): 7.7%us, 3.4%sy, 0.0%ni, 77.6%id, 11.0%wa, 0.0%hi, 0.3%si, 0.0%st Mem: 49374024k total, 32018844k used, 17355180k free, 115416k buffers Swap: 16777208k total, 117612k used, 16659596k free, 5689020k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 14165 mysql 20 0 8822m 3.1g 4672 S 162.3 6.6 89839:59 mysqld 40610 mysql 20 0 25.6g 14g 8336 S 121.7 31.5 282809:08 mysqld 49023 mysql 20 0 16.9g 5.1g 4772 S 4.6 10.8 34940:09 mysqld 很明显是前面两个mysqld进程导致整体负载较高。 而且,从 Cpu(s) 这行的统计结果也能看的出来, %us 和 %wa 的值较高,表示 当前比较大的瓶颈可能是在用户进程消耗的CPU以及磁盘I/O等待上 。 我们先分析下磁盘I/O的情况。 执行 sar -d 确认磁盘I/O是否真的较大: [yejr@imysql.com:~ ]# sar -d 1 Linux 2.6.32-431.el6.x86_64 (yejr.imysql.com) 01/13/2016 _x86_64_ (24 CPU) 11:54:32 AM dev8-0 5338.00 162784.00 1394.00 30.76 5.24 0.98 0.19 100.00 11:54:33 AM dev8-0 5134.00 148032.00 32365.00 35.14 6.93 1.34 0.19 100.10 11:54:34 AM dev8-0 5233.00 161376.00 996.00 31.03 9.77 1.88 0.19 100.00 11:54:35 AM dev8-0 4566.00 139232.00 1166.00 30.75 5.37 1.18 0.22 100.00 11:54:36 AM dev8-0 4665.00 145920.00 630.00 31.41 5.94 1.27 0.21 100.00 11:54:37 AM dev8-0 4994.00 156544.00 546.00 31.46 7.07 1.42 0.20 100.00 再利用 iotop 确认到底哪些进程消耗的磁盘I/O资源最多: [yejr@imysql.com:~ ]# iotop Total DISK READ: 60.38 M/s | Total DISK WRITE: 640.34 K/s TID PRIO USER DISK READ DISK WRITE SWAPIN IO> COMMAND 16397 be/4 mysql 8.92 M/s 0.00 B/s 0.00 % 94.77 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320 7295 be/4 mysql 10.98 M/s 0.00 B/s 0.00 % 93.59 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320 14295 be/4 mysql 10.50 M/s 0.00 B/s 0.00 % 93.57 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320 14288 be/4 mysql 14.30 M/s 0.00 B/s 0.00 % 91.86 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320 14292 be/4 mysql 14.37 M/s 0.00 B/s 0.00 % 91.23 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320 可以看到,端口号是3320的实例消耗的磁盘I/O资源比较多,那就看看这个实例里都有什么查询在跑吧。 2. MySQL层面检查确认首先看下当前都有哪些查询在运行: [yejr@imysql.com(db)]> mysqladmin pr|grep -v Sleep +----+----+----------+----+-------+-----+--------------+-----------------------------------------------------------------------------------------------+ | Id |User| Host | db |Command|Time | State | Info | +----+----+----------+----+-------+-----+--------------+-----------------------------------------------------------------------------------------------+ | 25 | x | 10.x:8519 | db | Query | 68 | Sending data | select max(Fvideoid) from (select Fvideoid from t where Fvideoid>404612 order by Fvideoid) t1 | | 26 | x | 10.x:8520 | db | Query | 65 | Sending data | select max(Fvideoid) from (select Fvideoid from t where Fvideoid>484915 order by Fvideoid) t1 | | 28 | x | 10.x:8522 | db | Query | 130 | Sending data | select max(Fvideoid) from (select Fvideoid from t where Fvideoid>404641 order by Fvideoid) t1 | | 27 | x | 10.x:8521 | db | Query | 167 | Sending data | select max(Fvideoid) from (select Fvideoid from t where Fvideoid>324157 order by Fvideoid) t1 | | 36 | x | 10.x:8727 | db | Query | 174 | Sending data | select max(Fvideoid) from (select Fvideoid from t where Fvideoid>324346 order by Fvideoid) t1 | +----+----+----------+----+-------+-----+--------------+-----------------------------------------------------------------------------------------------+ 可以看到有不少慢查询还未完成,从slow query log中也能发现,这类SQL发生的频率很高。 这是一个非常低效的SQL写法,导致需要对整个主键进行扫描,但实际上只需要取得一个最大值而已,从slow query log中可看到: Rows_sent: 1 Rows_examined: 5502460 每次都要扫描500多万行数据,却只为读取一个最大值,效率非常低。 经过分析,这个SQL稍做简单改造即可在个位数毫秒级内完成,原先则是需要150-180秒才能完成,提升了N次方。 改造的方法是: 对查询结果做一次倒序排序,取得第一条记录即可 。而原先的做法是对结果正序排序,取最后一条记录,汗啊。。。 |
到此,相信大家对“MySQL性能瓶颈排查定位怎么解决”有了更深的了解,不妨来实际操作一番吧!这里是创新互联网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!