网创优客建站品牌官网
为成都网站建设公司企业提供高品质网站建设
热线:028-86922220
成都专业网站建设公司

定制建站费用3500元

符合中小企业对网站设计、功能常规化式的企业展示型网站建设

成都品牌网站建设

品牌网站建设费用6000元

本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...

成都商城网站建设

商城网站建设费用8000元

商城网站建设因基本功能的需求不同费用上面也有很大的差别...

成都微信网站建设

手机微信网站建站3000元

手机微信网站开发、微信官网、微信商城网站...

建站知识

当前位置:首页 > 建站知识

python用函数求,python用函数求1到n的和

python求平均值的函数

首先我们先来了解一下计算平均数的IPO模式.

创新互联致力于互联网品牌建设与网络营销,包括网站设计制作、做网站、SEO优化、网络推广、整站优化营销策划推广、电子商务、移动互联网营销等。创新互联为不同类型的客户提供良好的互联网应用定制及解决方案,创新互联核心团队10年专注互联网开发,积累了丰富的网站经验,为广大企业客户提供一站式企业网站建设服务,在网站建设行业内树立了良好口碑。

输入:待输入计算平均数的数。

处理:平均数算法

输出:平均数

明白了程序的IPO模式之后,我们打开本地的python的IDE

工具,并新建一个python文件,命名为test6.py.

请点击输入图片描述

请点击输入图片描述

请点击输入图片描述

打开test6.py,进行编码,第一步,提示用户输入要计算多少个数的平均数。

请点击输入图片描述

第二步,初始化sum总和的值。注意,这是编码的好习惯,在定义一个变量的时候,给一个初始值。

请点击输入图片描述

第三步,循环输入要计算平均数的数,并计算总和sum的值。

请点击输入图片描述

最后,计算出平均数,并输出,利用“总和/数量”的公式计算出平均数。

请点击输入图片描述

编码完成后,记得保存,然后进行调试运行。按F5键或者点击菜单栏中的“run”-》“run model”来运行程序。

请点击输入图片描述

请点击输入图片描述

怎么用python求一个数的平方?

用python求一个数的平房可以按照如下的步骤:

1、利用input()函数获取一个数字a

a=input("请输入数字:")

2、利用运算符"**"获取变量a的二次幂运算

b=a**2

3、将获取到的结果利用print()函数打印到屏幕上即可。

print("a**2=",b)

运行结果:

Python有x有y如何求该函数

 enumerate(x,y)函数是把元组tuple、字符串str、列表list里面的元素遍历和索引组合,其用法与range()函数很相似,

下面示例enumerate(x,y)用法以及range(x)相似的用法,但是,enumerate(x,y)函数在遍历excel等时,可以实现与人视觉了解到的认识更好的理解。

enumerate(x,y)中参数y可以省略,省略时,默认从0开始,

如示例一:

list_words=["this","is","blog","of","white","mouse"]

for idx,word in enumerate(list_words):

print(idx,word)

打印结果:

使用range()函数遍历实现:

list_words=["this","is","blog","of","white","mouse"]

for  i in range(len(list_words)):

print(i,list_words[i])

打印结果:

自定义开始索引号:

示例二:

list_words=["this","is","blog","of","white","mouse"]

for idx,word in enumerate(list_words[1:],2):#也可以写成for idx,word in enumerate(list_words,start=2):

print(idx,word)

打印结果:

从上面示例中可以看出,enumerate(x,y)中x是需要遍历的元组tuple、字符串str、列表list,可以和切片组合使用,

y是自定义开始的索引号,根据自己的需要设置开始索引号。

python如何定义一个函数求列表各项数据平均值?

# coding = GBK

a =[1,2,3,4,5]

sum=0

b = len(a)

print("这个数组的长度为:",b)

for i  in a:

sum =sum +i

print("这个数组之和为:",sum)

print("这个数组平均数为",sum/b)

import sys

sum = 0

cnt = 0

f = open('1.txt', 'r')

files = f.readline()

while (files ):

sum = sum + float(files .split(",")[0])

cnt = cnt + 1

files = f.readline()

print(sum / cnt)

f.close()

或者。

#!/usr/bin/env pythonimport timeimport numpy as np

dd = np.random.randint(0, 20, size=(2*1000*1000))t_start = time.clock()avg_sum1 =

0.0BlockOffset = 0     while BlockOffset len(dd):

if dd[BlockOffset + 1] = 10:

avg_sum1 += dd[BlockOffset + 1] * 0.1

else:

avg_sum1 += dd[BlockOffset + 0] * 0.01

BlockOffset += 2print('Avg: ' + str(avg_sum1 / len(dd) / 2))    print('Exe time: ' +

str(time.clock() - t_start))

扩展资料:

python 实现求和、计数、最大最小值、平均值、中位数、标准偏差、百分比。

import sys

class Stats:

def __init__(self, sequence):

# sequence of numbers we will process

# convert all items to floats for numerical processing

self.sequence = [float(item) for item in sequence]

def sum(self):

if len(self.sequence)  1:

return None

else:

return sum(self.sequence)

def count(self):

return len(self.sequence)

def min(self):

if len(self.sequence)  1:

return None

else:

return min(self.sequence)

def max(self):

if len(self.sequence)  1:

return None

else:

return max(self.sequence)

def avg(self):

if len(self.sequence)  1:

return None

else:

return sum(self.sequence) / len(self.sequence) 

def median(self):

if len(self.sequence)  1:

return None

else:

self.sequence.sort()

return self.sequence[len(self.sequence) // 2]

def stdev(self):

if len(self.sequence)  1:

return None

else:

avg = self.avg()

sdsq = sum([(i - avg) ** 2 for i in self.sequence])

stdev = (sdsq / (len(self.sequence) - 1)) ** .5

return stdev

def percentile(self, percentile):

if len(self.sequence)  1:

value = None

elif (percentile = 100):

sys.stderr.write('ERROR: percentile must be 100.  you supplied: %s\n'% percentile)

value = None

else:

element_idx = int(len(self.sequence) * (percentile / 100.0))

self.sequence.sort()

value = self.sequence[element_idx]

return value

参考资料来源:百度百科-python


当前名称:python用函数求,python用函数求1到n的和
网站路径:http://bjjierui.cn/article/hdddip.html

其他资讯