符合中小企业对网站设计、功能常规化式的企业展示型网站建设
本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...
商城网站建设因基本功能的需求不同费用上面也有很大的差别...
手机微信网站开发、微信官网、微信商城网站...
用python怎样画出如题所示的正余弦函数图像? 如此编写代码,使其中两个轴、图例、刻度,大小,LaTex公式等要素与原图一致,需要用到的代码如下,没有缩进:
创新互联建站专注于企业营销型网站、网站重做改版、当涂网站定制设计、自适应品牌网站建设、H5场景定制、商城网站建设、集团公司官网建设、外贸网站建设、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为当涂等各大城市提供网站开发制作服务。
#-*-codeing:utf-8;-*-
from matplotlib import pyplot as plt
import numpy as np
a=np.linspace(0,360,980)
b=np.sin(a/180*np.pi)
c=np.cos(a/180*np.pi)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_xlim([0, 360])
ax.plot(a,b,label=r"$y=\sin(\theta)$")
ax.plot(a,c,label=r"$y=\cos(\theta)$")
ax.grid(True)
ax.set_ylabel(r"$y$")
ax.set_xlabel(r"$\theta$")
plt.xticks(np.arange(0,360+1,45))
plt.title("Sine Cosine Waves")
plt.legend()
plt.savefig("SinCosWaveDegFont.jpg")
plt.show()
代码运行show的窗口图
代码的截图
代码输出的文件的图
为避免中文显示出错,需导入matplotlib.pylab库
1.2.1 确定数据
1.2.2 创建画布
1.2.3 添加标题
1.2.4 添加x,y轴名称
1.2.5 添加x,y轴范围
1.2.6 添加x,y轴刻度
1.2.7 绘制曲线、图例, 并保存图片
保存图片时,dpi为清晰度,数值越高越清晰。请注意,函数结尾处,必须加plt.show(),不然图像不显示。
绘制流程与绘制不含子图的图像一致,只需注意一点:创建画布。
合理调整figsize、dpi,可避免出现第一幅图横轴名称与第二幅图标题相互遮盖的现象.
2.2.1 rc参数类型
2.2.2 方法1:使用rcParams设置
2.2.3 方法2:plot内设置
2.2.4 方法3:plot内简化设置
方法2中,线条形状,linestyle可简写为ls;线条宽度,linewidth可简写为lw;线条颜色,color可简写为c,等等。
有
当然有,这就是Python函数图像工具(EXE)。 本程序运用Python中最令人喜爱的数据处理工具numpy和超强的图像库matplotlib,实现13种不同类别函数的分类图像整理,展示图像均可以保存为图片的形式,具备拖动、放大等功能
raw_input获取的输入是字符串,不能直接用np.array,需要用split进行切分,然后强制转化成数值类型,才能用plot函数
我把你的代码稍微修改了一下,可能不太漂亮,不过能运行了
x=[1,2,3]
a = raw_input('function')
a = a.split(' ')#依空格对字符串a进行切分,如果是用逗号分隔,则改成a.split(',')
b = []
for i in range(len(a)):#把切分好的字符强制转化成int类型,如果是小数,将int改为float
b.append(int(a[i]))
plt.plot(x, b, label='x', color="green", linewidth=1)
不写出y=f(x)这样的表达式,由隐函数的等式直接绘制图像,以x²+y²+xy=1的图像为例,使用sympy间接调用matplotlib工具的代码和该二次曲线图像如下(注意python里的乘幂符号是**而不是^,还有,python的sympy工具箱的等式不是a==b,而是a-b或者Eq(a,b),这几点和matlab的区别很大)
直接在命令提示行的里面运行代码的效果
from sympy import *;
x,y=symbols('x y');
plotting.plot_implicit(x**2+y**2+x*y-1);
1、plt.legendplt.legend(loc=0)#显示图例的位置。
2、plt.figureplt.figure(figsize=(14,6),dpi=80)#设置绘图区域的大小和像素。
3、plt.xticksplt.xticks(new_year)#设置x轴的刻度线为new_year,new_year可以为数组。
4、plt.xlabelplt.xlabel('year')#x轴标签。
5、plt.plotplt.plot(number,color='blue',label="actualvalue")#将实际值的折线设置为蓝色。
6、两个图分开fig,axes=plt.subplots(2,1,sharex=True,figsize=(10,10))。
7、画竖直线plt.axvline(99,linestyle="dotted",linewidth=4,color='r')#99表示横坐标。
8、图片保存plt.savefig('timeseries_y.jpg')。