符合中小企业对网站设计、功能常规化式的企业展示型网站建设
本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...
商城网站建设因基本功能的需求不同费用上面也有很大的差别...
手机微信网站开发、微信官网、微信商城网站...
题主你好,
创新互联建站网站建设提供从项目策划、软件开发,软件安全维护、网站优化(SEO)、网站分析、效果评估等整套的建站服务,主营业务为成都网站设计、做网站,app软件开发以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。创新互联建站深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!
每门语言中都有自己语法, python中return关键字的用法是:
也就是说return后面要接的是表达式, 但如果按题主所说的,写成:
要注意 "person = {xxx}" 这是一个语句, 而非一个表达式, 和python中定义的return语法是相背的,所以不能这么写.
希望可以帮到题主, 欢迎追问.
在python3中,执行下面的语句
得到结果是 range(0,10) ,但是如果换一种方式
得到的结果就是[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
那为什么会这样呢?其实在Python3中range()函数返回的对象很像一个列表,但是它确实不是一个列表,它只是在迭代的情况下返回指定索引的值,它并不会在内存中产生一个列表对象,官方解释说这样做是为了节约内存空间。通常我们称这种对象是可迭代的,或者是可迭代对象。
这里就要引入另外一个叫迭代器的概念,迭代器可以从一个可迭代对象中连续获取指定索引的值,直到索引结束。比如list()函数,所以在上面的例子中,我们可以用list()这个迭代器将range()函数返回的对象变成一个列表。
由此可以看出:range()函数返回的是一个可迭代对象(类型是对象),而不是列表类型;list() 函数是对象迭代器,把对象转为一个列表,返回的变量类型为列表。
“在Python中,函数本身也是对象”
这一本质。那不妨慢慢来,从最基本的概念开始,讨论一下这个问题:
1. Python中一切皆对象
这恐怕是学习Python最有用的一句话。想必你已经知道Python中的list, tuple, dict等内置数据结构,当你执行:
alist = [1, 2, 3]
时,你就创建了一个列表对象,并且用alist这个变量引用它:
当然你也可以自己定义一个类:
class House(object):
def __init__(self, area, city):
self.area = area
self.city = city
def sell(self, price):
[...] #other code
return price
然后创建一个类的对象:
house = House(200, 'Shanghai')
OK,你立马就在上海有了一套200平米的房子,它有一些属性(area, city),和一些方法(__init__, self):
2. 函数是第一类对象
和list, tuple, dict以及用House创建的对象一样,当你定义一个函数时,函数也是对象:
def func(a, b):
return a+b
在全局域,函数对象被函数名引用着,它接收两个参数a和b,计算这两个参数的和作为返回值。
所谓第一类对象,意思是可以用标识符给对象命名,并且对象可以被当作数据处理,例如赋值、作为参数传递给函数,或者作为返回值return 等
因此,你完全可以用其他变量名引用这个函数对象:
add = func
这样,你就可以像调用func(1, 2)一样,通过新的引用调用函数了:
print func(1, 2)
print add(1, 2) #the same as func(1, 2)
或者将函数对象作为参数,传递给另一个函数:
def caller_func(f):
return f(1, 2)
if __name__ == "__main__":
print caller_func(func)
可以看到,
函数对象func作为参数传递给caller_func函数,传参过程类似于一个赋值操作f=func;
于是func函数对象,被caller_func函数作用域中的局部变量f引用,f实际指向了函数func;cc
当执行return f(1, 2)的时候,相当于执行了return func(1, 2);
因此输出结果为3。
3. 函数对象 vs 函数调用
无论是把函数赋值给新的标识符,还是作为参数传递给新的函数,针对的都是函数对象本身,而不是函数的调用。
用一个更加简单,但从外观上看,更容易产生混淆的例子来说明这个问题。例如定义了下面这个函数:
def func():
return "hello,world"
然后分别执行两次赋值:
ref1 = func #将函数对象赋值给ref1
ref2 = func() #调用函数,将函数的返回值("hello,world"字符串)赋值给ref2
很多初学者会混淆这两种赋值,通过Python内建的type函数,可以查看一下这两次赋值的结果:
In [4]: type(ref1)
Out[4]: function
In [5]: type(ref2)
Out[5]: str
可以看到,ref1引用了函数对象本身,而ref2则引用了函数的返回值。通过内建的callable函数,可以进一步验证ref1是可调用的,而ref2是不可调用的:
In [9]: callable(ref1)
Out[9]: True
In [10]: callable(ref2)
Out[10]: False
传参的效果与之类似。
4. 闭包LEGB法则
所谓闭包,就是将组成函数的语句和这些语句的执行环境打包在一起时,得到的对象
听上去的确有些复杂,还是用一个栗子来帮助理解一下。假设我们在foo.py模块中做了如下定义:
#foo.py
filename = "foo.py"
def call_func(f):
return f() #如前面介绍的,f引用一个函数对象,然后调用它
在另一个func.py模块中,写下了这样的代码:
#func.py
import foo #导入foo.py
filename = "func.py"
def show_filename():
return "filename: %s" % filename
if __name__ == "__main__":
print foo.call_func(show_filename) #注意:实际发生调用的位置,是在foo.call_func函数中
当我们用python func.py命令执行func.py时输出结果为:
chiyu@chiyu-PC:~$ python func.py
filename:func.py
很显然show_filename()函数使用的filename变量的值,是在与它相同环境(func.py模块)中定义的那个。尽管foo.py模块中也定义了同名的filename变量,而且实际调用show_filename的位置也是在foo.py的call_func内部。
而对于嵌套函数,这一机制则会表现的更加明显:闭包将会捕捉内层函数执行所需的整个环境:
#enclosed.py
import foo
def wrapper():
filename = "enclosed.py"
def show_filename():
return "filename: %s" % filename
print foo.call_func(show_filename) #输出:filename: enclosed.py
实际上,每一个函数对象,都有一个指向了该函数定义时所在全局名称空间的__globals__属性:
#show_filename inside wrapper
#show_filename.__globals__
{
'__builtins__': module '__builtin__' (built-in), #内建作用域环境
'__file__': 'enclosed.py',
'wrapper': function wrapper at 0x7f84768b6578, #直接外围环境
'__package__': None,
'__name__': '__main__',
'foo': module 'foo' from '/home/chiyu/foo.pyc', #全局环境
'__doc__': None
}
当代码执行到show_filename中的return "filename: %s" % filename语句时,解析器按照下面的顺序查找filename变量:
Local - 本地函数(show_filename)内部,通过任何方式赋值的,而且没有被global关键字声明为全局变量的filename变量;
Enclosing - 直接外围空间(上层函数wrapper)的本地作用域,查找filename变量(如果有多层嵌套,则由内而外逐层查找,直至最外层的函数);
Global - 全局空间(模块enclosed.py),在模块顶层赋值的filename变量;
Builtin - 内置模块(__builtin__)中预定义的变量名中查找filename变量;
在任何一层先找到了符合要求的filename变量,则不再向更外层查找。如果直到Builtin层仍然没有找到符合要求的变量,则抛出NameError异常。这就是变量名解析的:LEGB法则。
总结:
闭包最重要的使用价值在于:封存函数执行的上下文环境;
闭包在其捕捉的执行环境(def语句块所在上下文)中,也遵循LEGB规则逐层查找,直至找到符合要求的变量,或者抛出异常。
5. 装饰器语法糖(syntax sugar)
那么闭包和装饰器又有什么关系呢?
上文提到闭包的重要特性:封存上下文,这一特性可以巧妙的被用于现有函数的包装,从而为现有函数更加功能。而这就是装饰器。
还是举个例子,代码如下:
#alist = [1, 2, 3, ..., 100] -- 1+2+3+...+100 = 5050
def lazy_sum():
return reduce(lambda x, y: x+y, alist)
我们定义了一个函数lazy_sum,作用是对alist中的所有元素求和后返回。alist假设为1到100的整数列表:
alist = range(1, 101)
但是出于某种原因,我并不想马上返回计算结果,而是在之后的某个地方,通过显示的调用输出结果。于是我用一个wrapper函数对其进行包装:
def wrapper():
alist = range(1, 101)
def lazy_sum():
return reduce(lambda x, y: x+y, alist)
return lazy_sum
lazy_sum = wrapper() #wrapper() 返回的是lazy_sum函数对象
if __name__ == "__main__":
lazy_sum() #5050
这是一个典型的Lazy Evaluation的例子。我们知道,一般情况下,局部变量在函数返回时,就会被垃圾回收器回收,而不能再被使用。但是这里的alist却没有,它随着lazy_sum函数对象的返回被一并返回了(这个说法不准确,实际是包含在了lazy_sum的执行环境中,通过__globals__),从而延长了生命周期。
当在if语句块中调用lazy_sum()的时候,解析器会从上下文中(这里是Enclosing层的wrapper函数的局部作用域中)找到alist列表,计算结果,返回5050。
当你需要动态的给已定义的函数增加功能时,比如:参数检查,类似的原理就变得很有用:
def add(a, b):
return a+b
这是很简单的一个函数:计算a+b的和返回,但我们知道Python是 动态类型+强类型 的语言,你并不能保证用户传入的参数a和b一定是两个整型,他有可能传入了一个整型和一个字符串类型的值:
In [2]: add(1, 2)
Out[2]: 3
In [3]: add(1.2, 3.45)
Out[3]: 4.65
In [4]: add(5, 'hello')
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
/home/chiyu/ipython-input-4-f2f9e8aa5eae in module()
---- 1 add(5, 'hello')
/home/chiyu/ipython-input-1-02b3d3d6caec in add(a, b)
1 def add(a, b):
---- 2 return a+b
TypeError: unsupported operand type(s) for +: 'int' and 'str'
于是,解析器无情的抛出了一个TypeError异常。
动态类型:在运行期间确定变量的类型,python确定一个变量的类型是在你第一次给他赋值的时候;
强类型:有强制的类型定义,你有一个整数,除非显示的类型转换,否则绝不能将它当作一个字符串(例如直接尝试将一个整型和一个字符串做+运算);
因此,为了更加优雅的使用add函数,我们需要在执行+运算前,对a和b进行参数检查。这时候装饰器就显得非常有用:
import logging
logging.basicConfig(level = logging.INFO)
def add(a, b):
return a + b
def checkParams(fn):
def wrapper(a, b):
if isinstance(a, (int, float)) and isinstance(b, (int, float)): #检查参数a和b是否都为整型或浮点型
return fn(a, b) #是则调用fn(a, b)返回计算结果
#否则通过logging记录错误信息,并友好退出
logging.warning("variable 'a' and 'b' cannot be added")
return
return wrapper #fn引用add,被封存在闭包的执行环境中返回
if __name__ == "__main__":
#将add函数对象传入,fn指向add
#等号左侧的add,指向checkParams的返回值wrapper
add = checkParams(add)
add(3, 'hello') #经过类型检查,不会计算结果,而是记录日志并退出
注意checkParams函数:
首先看参数fn,当我们调用checkParams(add)的时候,它将成为函数对象add的一个本地(Local)引用;
在checkParams内部,我们定义了一个wrapper函数,添加了参数类型检查的功能,然后调用了fn(a, b),根据LEGB法则,解释器将搜索几个作用域,并最终在(Enclosing层)checkParams函数的本地作用域中找到fn;
注意最后的return wrapper,这将创建一个闭包,fn变量(add函数对象的一个引用)将会封存在闭包的执行环境中,不会随着checkParams的返回而被回收;
当调用add = checkParams(add)时,add指向了新的wrapper对象,它添加了参数检查和记录日志的功能,同时又能够通过封存的fn,继续调用原始的add进行+运算。
因此调用add(3, 'hello')将不会返回计算结果,而是打印出日志:
chiyu@chiyu-PC:~$ python func.py
WARNING:root:variable 'a' and 'b' cannot be added
有人觉得add = checkParams(add)这样的写法未免太过麻烦,于是python提供了一种更优雅的写法,被称为语法糖:
@checkParams
def add(a, b):
return a + b
这只是一种写法上的优化,解释器仍然会将它转化为add = checkParams(add)来执行。
6. 回归问题
def addspam(fn):
def new(*args):
print "spam,spam,spam"
return fn(*args)
return new
@addspam
def useful(a,b):
print a**2+b**2
首先看第二段代码:
@addspam装饰器,相当于执行了useful = addspam(useful)。在这里题主有一个理解误区:传递给addspam的参数,是useful这个函数对象本身,而不是它的一个调用结果;
再回到addspam函数体:
return new 返回一个闭包,fn被封存在闭包的执行环境中,不会随着addspam函数的返回被回收;
而fn此时是useful的一个引用,当执行return fn(*args)时,实际相当于执行了return useful(*args);
最后附上一张代码执行过程中的引用关系图,希望能帮助你理解:
转自
Python range() 函数返回的是一个可迭代对象(类型是对象),而不是列表类型, 所以打印的时候不会打印列表。
函数语法:
range(stop)range(start,stop,step)//默认start为0,step为1
Python list() 函数是对象迭代器,可以把range()返回的可迭代对象转为一个列表,返回的变量类型为列表。
list() 方法用于将元组转换为列表。
注: 元组与列表是非常类似的,区别在于元组的元素值不能修改,元组是放在括号中( ),列表是放于方括号中[ ]。
元组中只包含一个元素时,需要在元素后面添加逗号
tup1=(50,)
list、元组与字符串的索引一样,列表索引从0开始。列表可以进行截取、组合等。
在进行网页抓取的时候,分析定位html节点是获取抓取信息的关键,目前我用的是lxml模块(用来分析XML文档结构的,当然也能分析html结构), 利用其lxml.html的xpath对html进行分析,获取抓取信息。
首先,我们需要安装一个支持xpath的python库。目前在libxml2的网站上被推荐的python binding是lxml,也有beautifulsoup,不嫌麻烦的话还可以自己用正则表达式去构建,本文以lxml为例讲解。
假设有如下的HTML文档:
1 html 2 body 3 form 4 div id='leftmenu' 5 h3text/h3 6 ul id=’china’!-- first location -- 7 li.../li 8 li.../li 9 ......10 /ul11 ul id=’england’!-- second location--12 li.../li13 li.../li14 ......15 /ul16 /div17 /form18 /body19 /html
直接使用lxml处理:
1 import codecs2 from lxml import etree3 f=codecs.open("ceshi.html","r","utf-8")4 content=f.read()5 f.close()6 tree=etree.HTML(content)
etree提供了HTML这个解析函数,现在我们可以直接对HTML使用xpath了,是不是有点小激动,现在就尝试下吧。
在使用xpath之前我们先来看看作为对照的jQuery和RE。
在jQuery里要处理这种东西就很简单,特别是假如那个ul节点有id的话(比如是ul id=’china’):
$("#china").each(function(){...});
具体到此处是:
$("#leftmenu").children("h3:contains('text')").next("ul").each(function(){...});
找到id为leftmenu的节点,在其下找到一个内容包含为”text”的h3节点,再取其接下来的一个ul节点。
在python里要是用RE来处理就略麻烦一些:
block_pattern=re.compile(u"h3档案/h3(.*?)h3", re.I | re.S)
m=block_pattern.findall(content)
item_pattern=re.compile(u"li(.*?)/li", re.I | re.S)
items=item_pattern.findall(m[0])for i in items: print i
那么用xpath要怎么做呢?其实跟jQuery是差不多的:
nodes=tree.xpath("/descendant::ul[@id='china']")
当然,现在没有id的话也就只能用类似于jQuery的方法了。完整的xpath应该是这样写的(注意,原文件中的TAG有大小写的情况,但是在XPATH里只能用小写):
nodes=tree.xpath(u"/html/body/form/div[@id='leftmenu']/h3[text()='text']/following-sibling::ul[1]")
更简单的方法就是像jQuery那样直接根据id定位:
nodes=tree.xpath(u"//div[@id='leftmenu']/h3[text()='text']/following-sibling::ul[1]")
这两种方法返回的结果中,nodes[0]就是那个“text”的h3节点后面紧跟的第一个ul节点,这样就可以列出后面所有的ul节点内容了。
如果ul节点下面还有其他的节点,我们要找到更深节点的内容,如下的循环就是把这些节点的文本内容列出:
nodes=nodes[0].xpath("li/a")for n in nodes: print n.text
对比三种方法应该可以看出xpath和jQuery对于页面的解析都是基于XML的语义进行,而RE则纯粹是基于plain
text。RE对付简单的页面是没有问题,如果页面结构复杂度较高的时候(比如一堆的DIV来回嵌套之类),设计一个恰当的RE
pattern可能会远比写一个xpath要复杂。特别是目前主流的基于CSS的页面设计方式,其中大部分关键节点都会有id――对于使用jQuery的页面来说则更是如此,这时xpath相比RE就有了决定性的优势。
附录:基本XPATH语法介绍,详细请参考XPath的官方文档
XPATH基本上是用一种类似目录树的方法来描述在XML文档中的路径。比如用“/”来作为上下层级间的分隔。第一个“/”表示文档的根节点(注意,不是指文档最外层的tag节点,而是指文档本身)。比如对于一个HTML文件来说,最外层的节点应该是”/html”。
同样的,“..”和“.”分别被用来表示父节点和本节点。
XPATH返回的不一定就是唯一的节点,而是符合条件的所有节点。比如在HTML文档里使用“/html/head/scrpt”就会把head里的所有script节点都取出来。
为了缩小定位范围,往往还需要增加过滤条件。过滤的方法就是用“[”“]”把过滤条件加上。比如在HTML文档里使用“/html/body/div[@id='main']”,即可取出body里id为main的div节点。
其中@id表示属性id,类似的还可以使用如@name, @value, @href, @src, @class….
而
函数text()的意思则是取得节点包含的文本。比如:divhellopworld/p
/div中,用”div[text()='hello']“即可取得这个div,而world则是p的text()。
函数position()的意思是取得节点的位置。比如“li[position()=2]”表示取得第二个li节点,它也可以被省略为“li[2]”。
不过要注意的是数字定位和过滤
条件的顺序。比如“ul/li[5][@name='hello']”表示取ul下第五项li,并且其name必须是hello,否则返回空。而如果用
“ul/li[@name='hello'][5]”的意思就不同,它表示寻找ul下第五个name为”hello“的li节点。
此外,“*”可以代替所有的节点名,比如用”/html/body/*/span”可以取出body下第二级的所有span,而不管它上一级是div还是p或是其它什么东东。
而
“descendant::”前缀可以指代任意多层的中间节点,它也可以被省略成一个“/”。比如在整个HTML文档中查找id为“leftmenu”的
div,可以用“/descendant::div[@id='leftmenu']”,也可以简单地使用“
//div[@id='leftmenu']”。
至于“following-sibling::”前缀就如其名所说,表示同一层的下一个节点。”following-sibling::*”就是任意下一个节点,而“following-sibling::ul”就是下一个ul节点。
返回的是一个可迭代对象,不是返回列表。
比如说list(range(1,10))
list是一个迭代器接受range返回的可迭代对象生成一个列表