符合中小企业对网站设计、功能常规化式的企业展示型网站建设
本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...
商城网站建设因基本功能的需求不同费用上面也有很大的差别...
手机微信网站开发、微信官网、微信商城网站...
1)首先你要明白爬虫怎样工作。
乌拉特后网站制作公司哪家好,找创新互联!从网页设计、网站建设、微信开发、APP开发、成都响应式网站建设公司等网站项目制作,到程序开发,运营维护。创新互联于2013年开始到现在10年的时间,我们拥有了丰富的建站经验和运维经验,来保证我们的工作的顺利进行。专注于网站建设就选创新互联。
想象你是一只蜘蛛,现在你被放到了互联“网”上。那么,你需要把所有的网页都看一遍。怎么办呢?没问题呀,你就随便从某个地方开始,比如说人民日报的首页,这个叫initial pages,用$表示吧。
在人民日报的首页,你看到那个页面引向的各种链接。于是你很开心地从爬到了“国内新闻”那个页面。太好了,这样你就已经爬完了俩页面(首页和国内新闻)!暂且不用管爬下来的页面怎么处理的,你就想象你把这个页面完完整整抄成了个html放到了你身上。
突然你发现, 在国内新闻这个页面上,有一个链接链回“首页”。作为一只聪明的蜘蛛,你肯定知道你不用爬回去的吧,因为你已经看过了啊。所以,你需要用你的脑子,存下你已经看过的页面地址。这样,每次看到一个可能需要爬的新链接,你就先查查你脑子里是不是已经去过这个页面地址。如果去过,那就别去了。
好的,理论上如果所有的页面可以从initial page达到的话,那么可以证明你一定可以爬完所有的网页。
那么在python里怎么实现呢?
很简单
import Queue
initial_page = "初始化页"
url_queue = Queue.Queue()
seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直进行直到海枯石烂
if url_queue.size()0:
current_url = url_queue.get() #拿出队例中第一个的url
store(current_url) #把这个url代表的网页存储好
for next_url in extract_urls(current_url): #提取把这个url里链向的url
if next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
写得已经很伪代码了。
所有的爬虫的backbone都在这里,下面分析一下为什么爬虫事实上是个非常复杂的东西——搜索引擎公司通常有一整个团队来维护和开发。
2)效率
如果你直接加工一下上面的代码直接运行的话,你需要一整年才能爬下整个豆瓣的内容。更别说Google这样的搜索引擎需要爬下全网的内容了。
问题出在哪呢?需要爬的网页实在太多太多了,而上面的代码太慢太慢了。设想全网有N个网站,那么分析一下判重的复杂度就是N*log(N),因为所有网页要遍历一次,而每次判重用set的话需要log(N)的复杂度。OK,OK,我知道python的set实现是hash——不过这样还是太慢了,至少内存使用效率不高。
通常的判重做法是怎样呢?Bloom Filter. 简单讲它仍然是一种hash的方法,但是它的特点是,它可以使用固定的内存(不随url的数量而增长)以O(1)的效率判定url是否已经在set中。可惜天下没有白吃的午餐,它的唯一问题在于,如果这个url不在set中,BF可以100%确定这个url没有看过。但是如果这个url在set中,它会告诉你:这个url应该已经出现过,不过我有2%的不确定性。注意这里的不确定性在你分配的内存足够大的时候,可以变得很小很少。一个简单的教程:Bloom Filters by Example
注意到这个特点,url如果被看过,那么可能以小概率重复看一看(没关系,多看看不会累死)。但是如果没被看过,一定会被看一下(这个很重要,不然我们就要漏掉一些网页了!)。 [IMPORTANT: 此段有问题,请暂时略过]
好,现在已经接近处理判重最快的方法了。另外一个瓶颈——你只有一台机器。不管你的带宽有多大,只要你的机器下载网页的速度是瓶颈的话,那么你只有加快这个速度。用一台机子不够的话——用很多台吧!当然,我们假设每台机子都已经进了最大的效率——使用多线程(python的话,多进程吧)。
3)集群化抓取
爬取豆瓣的时候,我总共用了100多台机器昼夜不停地运行了一个月。想象如果只用一台机子你就得运行100个月了...
那么,假设你现在有100台机器可以用,怎么用python实现一个分布式的爬取算法呢?
我们把这100台中的99台运算能力较小的机器叫作slave,另外一台较大的机器叫作master,那么回顾上面代码中的url_queue,如果我们能把这个queue放到这台master机器上,所有的slave都可以通过网络跟master联通,每当一个slave完成下载一个网页,就向master请求一个新的网页来抓取。而每次slave新抓到一个网页,就把这个网页上所有的链接送到master的queue里去。同样,bloom filter也放到master上,但是现在master只发送确定没有被访问过的url给slave。Bloom Filter放到master的内存里,而被访问过的url放到运行在master上的Redis里,这样保证所有操作都是O(1)。(至少平摊是O(1),Redis的访问效率见:LINSERT – Redis)
考虑如何用python实现:
在各台slave上装好scrapy,那么各台机子就变成了一台有抓取能力的slave,在master上装好Redis和rq用作分布式队列。
代码于是写成
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = ""
while(True):
if request == 'GET':
if distributed_queue.size()0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
好的,其实你能想到,有人已经给你写好了你需要的:darkrho/scrapy-redis · GitHub
4)展望及后处理
虽然上面用很多“简单”,但是真正要实现一个商业规模可用的爬虫并不是一件容易的事。上面的代码用来爬一个整体的网站几乎没有太大的问题。
但是如果附加上你需要这些后续处理,比如
有效地存储(数据库应该怎样安排)
有效地判重(这里指网页判重,咱可不想把人民日报和抄袭它的大民日报都爬一遍)
有效地信息抽取(比如怎么样抽取出网页上所有的地址抽取出来,“朝阳区奋进路中华道”),搜索引擎通常不需要存储所有的信息,比如图片我存来干嘛...
及时更新(预测这个网页多久会更新一次)
如你所想,这里每一个点都可以供很多研究者十数年的研究。虽然如此,
“路漫漫其修远兮,吾将上下而求索”。
所以,不要问怎么入门,直接上路就好了:)
本来是想爬取之后作最佳羁绊组合推算,但是遇到知识点无法消化(知识图谱),所以暂时先不组合了,实力有限
库的安装
1.requests #爬取棋子数据
2.json #棋子数据为js动态,需使用json解析
3.BeautifulSoup
实战前先新建个lol文件夹作为工作目录,并创建子目录data,用于存放数据。
1.爬取数据,新建个py文件,用于爬取云顶数据,命名为data.py
1.1定义个req函数,方便读取。//需设定编码格式,否则会出现乱码
def Re_data(url):
re = requests.get(url)
re.encoding = 'gbk'
data = json.loads(re.text)
return data['data']
1.2定义个Get函数,用于读取数据并使用保存函数进行保存数据,保存格式为json。
def Get_data():
# 获取数据并保存至data目录
base_url = ''
chess = Re_data(base_url + 'chess.js')
race = Re_data(base_url + 'race.js')
job = Re_data(base_url + 'job.js')
equip = Re_data(base_url + 'equip.js')
Save_data(chess,race,job,equip)
1.3定义save函数实现读取的数据进行文件保存,保存目录为工作目录下的data文件夹。
def Save_data(t_chess,t_race,t_job,t_equip):
with open('./data/chess.json','w') as f:
json.dump(t_chess,f,indent='\t')
with open('./data/race.json','w') as f:
json.dump(t_race,f,indent='\t')
with open('./data/job.json','w') as f:
json.dump(t_job,f,indent='\t')
with open('./data/equip.json','w') as f:
json.dump(t_equip,f,indent='\t')
1.4定义主函数main跑起来
if __name__ == '__main__':
start = time.time()
Get_data()
print('运行时间:' + str(time.time() - start) + '秒')
至此,数据爬取完成。
2.种族和职业进行组合。
2.1未完成 //未完成,使用穷举方法进行组合会出现内存不够导致组合失败(for循环嵌套导致数组内存超限)
//待学习,使用知识图谱建立组合优选,可参考:
期间遇到的问题:
1.爬取棋子数据时为动态js加载,需通过json模块的loads方法获取
2.3层for循环嵌套数据量大,导致计算失败,需优化计算方法。
现在之所以有这么多的小伙伴热衷于爬虫技术,无外乎是因为爬虫可以帮我们做很多事情,比如搜索引擎、采集数据、广告过滤等,以Python为例,Python爬虫可以用于数据分析,在数据抓取方面发挥巨大的作用。
但是这并不意味着单纯掌握一门Python语言,就对爬虫技术触类旁通,要学习的知识和规范还有喜很多,包括但不仅限于HTML 知识、HTTP/HTTPS 协议的基本知识、正则表达式、数据库知识,常用抓包工具的使用、爬虫框架的使用等。而且涉及到大规模爬虫,还需要了解分布式的概念、消息队列、常用的数据结构和算法、缓存,甚至还包括机器学习的应用,大规模的系统背后都是靠很多技术来支撑的。
零基础如何学爬虫技术?对于迷茫的初学者来说,爬虫技术起步学习阶段,最重要的就是明确学习路径,找准学习方法,唯有如此,在良好的学习习惯督促下,后期的系统学习才会事半功倍,游刃有余。
用Python写爬虫,首先需要会Python,把基础语法搞懂,知道怎么使用函数、类和常用的数据结构如list、dict中的常用方法就算基本入门。作为入门爬虫来说,需要了解 HTTP协议的基本原理,虽然 HTTP 规范用一本书都写不完,但深入的内容可以放以后慢慢去看,理论与实践相结合后期学习才会越来越轻松。关于爬虫学习的具体步骤,我大概罗列了以下几大部分,大家可以参考:
网络爬虫基础知识:
爬虫的定义
爬虫的作用
Http协议
基本抓包工具(Fiddler)使用
Python模块实现爬虫:
urllib3、requests、lxml、bs4 模块大体作用讲解
使用requests模块 get 方式获取静态页面数据
使用requests模块 post 方式获取静态页面数据
使用requests模块获取 ajax 动态页面数据
使用requests模块模拟登录网站
使用Tesseract进行验证码识别
Scrapy框架与Scrapy-Redis:
Scrapy 爬虫框架大体说明
Scrapy spider 类
Scrapy item 及 pipeline
Scrapy CrawlSpider 类
通过Scrapy-Redis 实现分布式爬虫
借助自动化测试工具和浏览器爬取数据:
Selenium + PhantomJS 说明及简单实例
Selenium + PhantomJS 实现网站登录
Selenium + PhantomJS 实现动态页面数据爬取
爬虫项目实战:
分布式爬虫+ Elasticsearch 打造搜索引擎