符合中小企业对网站设计、功能常规化式的企业展示型网站建设
本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...
商城网站建设因基本功能的需求不同费用上面也有很大的差别...
手机微信网站开发、微信官网、微信商城网站...
Python range()函数可创建一个整数列表,一般用在for循环中。
剑河ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联建站的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:18982081108(备注:SSL证书合作)期待与您的合作!
注意:Python3 range()返回的是一个可迭代对象,类型是对象,而不是列表类型,所以打印的时候不会打印列表。
函数语法:
range(start,stop[,step])
参数说明:
start:计数从start开始。默认是从0开始。例如range(5)等价于range(0,5);
stop:计数到stop结束,但不包括stop。例如:range(0,5)是[0,1,2,3,4]没有5;
step:步长,默认为1。例如:range(0,5)等价于range(0,5,1)。
实例:
range(10) # 从 0 开始到 9
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
range(1, 11) # 从 1 开始到 10
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
range(0, 30, 5) # 步长为 5
[0, 5, 10, 15, 20, 25]
range(0, 10, 3) # 步长为 3
[0, 3, 6, 9]
range(0, -10, -1) # 负数
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
range(0)
[]
range(1, 0)
[]
以下是range在for中的使用,循环出runoob的每个字母:
x = 'runoob'
for i in range(len(x)) :
... print(x[i])
...
r
u
n
o
o
b
import math
#定义点的函数
class Point:
def __init__(self,x=0,y=0):
self.x = x
self.y = y
#定义直线函数
def getlen(p1, p2):
#用math.sqrt()求平方根
len = math.sqrt(((p1.x - p2.x) ** 2) +((p1.y - p2.y) ** 2))
return self.len
#设置点p1的坐标
p1 = Point(0,0)
#设置点p2的坐标
p2 = Point(3,4)
#获取两点之间直线的长度
d =.getlen(p1, p2)
print(d)
动态规划的三要素:最优子结构,边界和状态转移函数,最优子结构是指每个阶段的最优状态可以从之前某个阶段的某个或某些状态直接得到(子问题的最优解能够决定这个问题的最优解),边界指的是问题最小子集的解(初始范围),状态转移函数是指从一个阶段向另一个阶段过度的具体形式,描述的是两个相邻子问题之间的关系(递推式)
重叠子问题,对每个子问题只计算一次,然后将其计算的结果保存到一个表格中,每一次需要上一个子问题解时,进行调用,只要o(1)时间复杂度,准确的说,动态规划是利用空间去换取时间的算法.
判断是否可以利用动态规划求解,第一个是判断是否存在重叠子问题。
爬楼梯
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶
分析:
假定n=10,首先考虑最后一步的情况,要么从第九级台阶再走一级到第十级,要么从第八级台阶走两级到第十级,因而,要想到达第十级台阶,最后一步一定是从第八级或者第九级台阶开始.也就是说已知从地面到第八级台阶一共有X种走法,从地面到第九级台阶一共有Y种走法,那么从地面到第十级台阶一共有X+Y种走法.
即F(10)=F(9)+F(8)
分析到这里,动态规划的三要素出来了.
边界:F(1)=1,F(2)=2
最优子结构:F(10)的最优子结构即F(9)和F(8)
状态转移函数:F(n)=F(n-1)+F(n-2)
class Solution(object):
def climbStairs(self, n):
"""
:type n: int
:rtype: int
"""
if n=2:
return n
a=1#边界
b=2#边界
temp=0
for i in range(3,n+1):
temp=a+b#状态转移
a=b#最优子结构
b=temp#最优子结构
return temp
利用动态规划的思想计算编辑距离。
编辑距离是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。通常来说,编辑距离越小,两个文本的相似性越大。这里的编辑操作主要包括三种:
插入:将一个字符插入某个字符串;
删除:将字符串中的某个字符删除;
替换:将字符串中的某个字符替换为另外一个字符。
那么,如何用Python计算编辑距离呢?我们可以从较为简单的情况进行分析。
当两个字符串都为空串,那么编辑距离为0;
当其中一个字符串为空串时,那么编辑距离为另一个非空字符串的长度;
当两个字符串均为非空时(长度分别为 i 和 j ),取以下三种情况最小值即可:
1、长度分别为 i-1 和 j 的字符串的编辑距离已知,那么加1即可;
2、长度分别为 i 和 j-1 的字符串的编辑距离已知,那么加1即可;
3、长度分别为 i-1 和 j-1 的字符串的编辑距离已知,此时考虑两种情况,若第i个字符和第j个字符不同,那么加1即可;如果相同,那么不需要加1。
很明显,上述算法的思想即为 动态规划 。
求长度为m和n的字符串的编辑距离,首先定义函数——edit(i, j),它表示第一个长度为i的字符串与第二个长度为j的字符串之间的编辑距离。动态规划表达式可以写为:
if i == 0 且 j == 0,edit(i, j) = 0
if (i == 0 且 j 0 )或者 (i 0 且j == 0),edit(i, j) = i + j
if i ≥ 1 且 j ≥ 1 ,edit(i, j) == min{ edit(i-1, j) + 1, edit(i, j-1) + 1, edit(i-1, j-1) + d(i, j) },当第一个字符串的第i个字符不等于第二个字符串的第j个字符时,d(i, j) = 1;否则,d(i, j) = 0。
def edit_distance(word1, word2):
len1 = len(word1)
len2 = len(word2)
dp = np.zeros((len1 + 1,len2 + 1))
for i in range(len1 + 1):
dp[i][0] = i
for j in range(len2 + 1):
dp[0][j] = j
for i in range(1, len1 + 1):
for j in range(1, len2 + 1):
delta = 0 if word1[i-1] == word2[j-1] else 1
dp[i][j] = min(dp[i - 1][j - 1] + delta, min(dp[i-1][j] + 1, dp[i][j - 1] + 1))
return dp[len1][len2]
edit_distance('牛奶','华西奶')
结果:2
1、点击“开始”——“ArcGIS”——“ArcMap”,启动ArcMap程序,并添加两个点要素类到地图上。
2、点击“ArcToolbox”——“分析工具”——“邻域分析”——“点距离”,打开点距离工具界面。
3、选择输入要素,即作为起点的要素类,可以选择已添加到地图上的要素类,也可以选择外部要素类。
4、选择邻近要素,即作为终点的要素类,可以选择已添加到地图上的要素类,也可以选择外部要素类。
5、选择计算结果的存放位置和表名称。
6、输入搜索半径,即要计算多大半径范围内的邻近点要素之间的距离,可以为空,如果为空,则计算起点到邻近要素类中所有点要素之间的距离。点击“确定”,开始计算起点要素到邻近要素之间的距离。
7、计算完成后,计算结果表会自动添加到地图上,右键点击结果表,点击打开,可以查看计算结果。
import math
class Dot:
def __init__(self,x,y,z):
self.x=float(x)
self.y=float(y)
self.z=float(z)
t1=input('请输入点t1的坐标:')
t2=input('请输入点t2的坐标:')
t1=eval('[%s]'%t1)
t2=eval('[%s]'%t2)
T1=Dot(t1[0],t1[1],t1[2])
T2=Dot(t2[0],t2[1],t2[2])
print('点t1:',T1.x,T1.y,T1.z)
print('点t2:',T2.x,T2.y,T2.z)
s=math.sqrt((T1.x-T2.x)*(T1.x-T2.x)-(T1.y-T2.y)*(T1.y-T2.y)+(T1.z-T2.z)*(T1.z-T2.z))
print("两点间的距离为:%s"% s)
def My_abs(num):
if num 0:
num *= -1
return num
print(abs(-5))
x1,y1=eval(input("输入A点坐标,以逗号分隔:"))
x2,y2=eval(input("输入B点坐标,以逗号分隔:"))
# 计算曼哈顿距离的函数
def getManhattanDistance(x1, y1, x2, y2):
return My_abs(x1 - x2) + My_abs(y1 - y2)
# 调用并输出计算的曼哈顿距离
print(getManhattanDistance(x1, y1, x2, y2))
abs在Python中有了,然后我就命名成了My_abs。
备注也都打好了。
折柳成荫写的是C,soulofbug写的是python