网创优客建站品牌官网
为成都网站建设公司企业提供高品质网站建设
热线:028-86922220
成都专业网站建设公司

定制建站费用3500元

符合中小企业对网站设计、功能常规化式的企业展示型网站建设

成都品牌网站建设

品牌网站建设费用6000元

本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...

成都商城网站建设

商城网站建设费用8000元

商城网站建设因基本功能的需求不同费用上面也有很大的差别...

成都微信网站建设

手机微信网站建站3000元

手机微信网站开发、微信官网、微信商城网站...

建站知识

当前位置:首页 > 建站知识

如何使用np.where()[0]和np.where()[1]-创新互联

如何使用np.where()[0] 和 np.where()[1]?相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。

成都创新互联成立于2013年,是专业互联网技术服务公司,拥有项目成都网站制作、成都做网站网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元朝阳县做网站,已为上家服务,为朝阳县各地企业和个人服务,联系电话:18980820575

具体如下:

import numpy as np
 
a = np.arange(12).reshape(3,4)
print('a:', a)
print('np.where(a > 5):', np.where(a > 5))
print('a[np.where(a > 5)]:', a[np.where(a > 5)])
print('np.where(a > 5)[0]:', np.where(a > 5)[0])
print('np.where(a > 5)[1]:', np.where(a > 5)[1])
print(a[np.where(a > 5)[0], np.where(a > 5)[1]])
a: [[ 0 1 2 3]
 [ 4 5 6 7]
 [ 8 9 10 11]]
np.where(a > 5): (array([1, 1, 2, 2, 2, 2]), array([2, 3, 0, 1, 2, 3]))
a[np.where(a > 5)]: [ 6 7 8 9 10 11]
np.where(a > 5)[0]: [1 1 2 2 2 2]
np.where(a > 5)[1]: [2 3 0 1 2 3]
[ 6 7 8 9 10 11]

np.where()[0] 表示行索引,np.where()[1]表示列索引

numpy.where() 有两种用法:

1. np.where(condition, x, y)

满足条件(condition),输出x,不满足输出y。

如果是一维数组,相当于[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]

>>> aa = np.arange(10)
>>> np.where(aa,1,-1)
array([-1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) # 0为False,所以第一个输出-1
>>> np.where(aa > 5,1,-1)
array([-1, -1, -1, -1, -1, -1, 1, 1, 1, 1])

>>> np.where([[True,False], [True,True]],  # 官网上的例子
  [[1,2], [3,4]],
       [[9,8], [7,6]])
array([[1, 8],
  [3, 4]])

上面这个例子的条件为[[True,False], [True,False]],分别对应最后输出结果的四个值。第一个值从[1,9]中选,因为条件为True,所以是选1。第二个值从[2,8]中选,因为条件为False,所以选8,后面以此类推。类似的问题可以再看个例子:

>>> a = 10
>>> np.where([[a > 5,a < 5], [a == 10,a == 7]],
       [["chosen","not chosen"], ["chosen","not chosen"]],
       [["not chosen","chosen"], ["not chosen","chosen"]])

array([['chosen', 'chosen'],
    ['chosen', 'chosen']], dtype='

2. np.where(condition)

只有条件 (condition),没有x和y,则输出满足条件 (即非0) 元素的坐标 (等价于numpy.nonzero)。这里的坐标以tuple的形式给出,通常原数组有多少维,输出的tuple中就包含几个数组,分别对应符合条件元素的各维坐标。

>>> a = np.array([2,4,6,8,10])
>>> np.where(a > 5)  # 返回索引
(array([2, 3, 4]),)  
>>> a[np.where(a > 5)]   # 等价于 a[a>5]
array([ 6, 8, 10])

>>> np.where([[0, 1], [1, 0]])
(array([0, 1]), array([1, 0]))

上面这个例子条件中[[0,1],[1,0]]的真值为两个1,各自的第一维坐标为[0,1],第二维坐标为[1,0] 。

下面看个复杂点的例子:

>>> a = np.arange(27).reshape(3,3,3)
>>> a
array([[[ 0, 1, 2],
    [ 3, 4, 5],
    [ 6, 7, 8]],

    [[ 9, 10, 11],
    [12, 13, 14],
    [15, 16, 17]],

    [[18, 19, 20],
    [21, 22, 23],
    [24, 25, 26]]])

>>> np.where(a > 5)
(array([0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2]),
 array([2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2]),
 array([0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2]))
# 符合条件的元素为
  [ 6, 7, 8]],

   [[ 9, 10, 11],
    [12, 13, 14],
    [15, 16, 17]],

   [[18, 19, 20],
    [21, 22, 23],
    [24, 25, 26]]]

所以np.where会输出每个元素的对应的坐标,因为原数组有三维,所以tuple中有三个数组。

需要注意的一点是,输入的不能直接是list,需要转为array或者为array才行。比如range(10)和np.arange(10)后者返回的是数组,使用np.where才能达到效果。

看完上述内容,你们掌握如何使用np.where()[0] 和 np.where()[1]的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注创新互联行业资讯频道,感谢各位的阅读!


文章标题:如何使用np.where()[0]和np.where()[1]-创新互联
文章地址:http://bjjierui.cn/article/hspho.html

其他资讯