网创优客建站品牌官网
为成都网站建设公司企业提供高品质网站建设
热线:028-86922220
成都专业网站建设公司

定制建站费用3500元

符合中小企业对网站设计、功能常规化式的企业展示型网站建设

成都品牌网站建设

品牌网站建设费用6000元

本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...

成都商城网站建设

商城网站建设费用8000元

商城网站建设因基本功能的需求不同费用上面也有很大的差别...

成都微信网站建设

手机微信网站建站3000元

手机微信网站开发、微信官网、微信商城网站...

建站知识

当前位置:首页 > 建站知识

python中Box-Cox变换指的是什么

这篇文章给大家分享的是有关python中Box-Cox变换指的是什么的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

蔡家坡网站建设公司创新互联,蔡家坡网站设计制作,有大型网站制作公司丰富经验。已为蔡家坡上1000+提供企业网站建设服务。企业网站搭建\成都外贸网站制作要多少钱,请找那个售后服务好的蔡家坡做网站的公司定做!

1、概念

Box-Cox变换是统计建模中常用的建模方法,主要用于连续响应变量不满足正态分布时,可采用Box-Cox变换,使线性回归模型在满足线性、正态性、独立性和方差的同时不丢失信息。在Box-Cox转换之前,有必要将数据归一化。

2、实例

#我们这里是对训练集和测试集一起归一化,也可以分开进行归一化,(分开)这种方式需要建立训练数据和测试数据分布一直的情况下,建议在数据量大的情况下使用。
# 绘图显示Box-Cox变换对数据分布影响
cols_numeric_left = cols_numeric[0:13]
cols_numeric_right = cols_numeric[13:] #这里是将特征分为两部分,前13个为第一部分
## Check effect of Box-Cox transforms on distributions of continuous variables
 
train_data_process = pd.concat([train_data_process, train_data['target']], axis=1)
 
fcols = 6
frows = len(cols_numeric_left)
plt.figure(figsize=(4*fcols,4*frows))
i=0
for var in cols_numeric_left:
    dat = train_data_process[[var, 'target']].dropna()
        
    i+=1
    plt.subplot(frows,fcols,i)
    sns.distplot(dat[var] , fit=stats.norm);
    plt.title(var+' Original')
    plt.xlabel('')
        
    i+=1
    plt.subplot(frows,fcols,i)
    _=stats.probplot(dat[var], plot=plt)
    plt.title('skew='+'{:.4f}'.format(stats.skew(dat[var]))) #计算数据集的偏度
    plt.xlabel('')
    plt.ylabel('')
        
    i+=1
    plt.subplot(frows,fcols,i)
    plt.plot(dat[var],dat['target'],'.',alpha=0.5)
    plt.title('corr='+'{:.2f}'.format(np.corrcoef(dat[var],dat['target'])[0][1]))
 
    i+=1
    plt.subplot(frows,fcols,i)
    trans_var, lambda_var = stats.boxcox(dat[var].dropna()+1)
    trans_var = scale_data(trans_var)    
    sns.distplot(trans_var , fit=stats.norm);
    plt.title(var+' Tramsformed')
    plt.xlabel('')
        
    i+=1
    plt.subplot(frows,fcols,i)
    _=stats.probplot(trans_var, plot=plt)
    plt.title('skew='+'{:.4f}'.format(stats.skew(trans_var))) #归一化后,偏度明显变小,相关性变化不大
    plt.xlabel('')
    plt.ylabel('')
        
    i+=1
    plt.subplot(frows,fcols,i)
    plt.plot(trans_var, dat['target'],'.',alpha=0.5)
    plt.title('corr='+'{:.2f}'.format(np.corrcoef(trans_var,dat['target'])[0][1]))

感谢各位的阅读!关于“python中Box-Cox变换指的是什么”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!


当前题目:python中Box-Cox变换指的是什么
标题URL:http://bjjierui.cn/article/igeepd.html

其他资讯