网创优客建站品牌官网
为成都网站建设公司企业提供高品质网站建设
热线:028-86922220
成都专业网站建设公司

定制建站费用3500元

符合中小企业对网站设计、功能常规化式的企业展示型网站建设

成都品牌网站建设

品牌网站建设费用6000元

本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...

成都商城网站建设

商城网站建设费用8000元

商城网站建设因基本功能的需求不同费用上面也有很大的差别...

成都微信网站建设

手机微信网站建站3000元

手机微信网站开发、微信官网、微信商城网站...

建站知识

当前位置:首页 > 建站知识

如何使用matplotlib中的折线图方法plot()

本篇内容介绍了“如何使用matplotlib中的折线图方法plot()”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

网站建设公司,为您提供网站建设,网站制作,网页设计及定制网站建设服务,专注于企业网站建设,高端网页制作,对成都茶艺设计等多个行业拥有丰富的网站建设经验的网站建设公司。专业网站设计,网站优化推广哪家好,专业成都网站推广优化,H5建站,响应式网站。

plt.plot()的定义及调用

定义:

  •  plt.plot(*args, scalex=True, scaley=True, data=None, **kwargs)

调用:

  •  plot([x], y, [fmt], *, data=None, **kwargs)

  •  plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)

位置参数:

  •  [x], y, [fmt]

关键字传参:

  •  *后面的参数

x序列的不同类型

文本型的x序列

# data  X = [8,3,5,'t'] # 会按顺序【0,1,2,3】被定位在x轴的刻度上  Y = [1,2,3,4]  plt.plot(X,Y,marker = 'o',c='g')  ax = plt.gca()  print('x轴刻度:',plt.xticks())  #list  xticklabels_lst = ax.get_xticklabels()  print('-'*70)

x轴刻度:([0, 1, 2, 3], )

----------------------------------------------------------------------

如何使用matplotlib中的折线图方法plot()

print('x轴刻度标签:',list(xticklabels_lst))  #是个文本标签

x轴刻度标签:[Text(0, 0, '8'), Text(1, 0, '3'), Text(2, 0, '5'), Text(3, 0, 't')]

数字型的x序列

# data  X = [8,3,5,1] # 会按数字【8,3,5,1】被定位在x轴的刻度上  Y = [1,2,3,4]  plt.plot(X,Y,marker = 'o',c='g')  ax = plt.gca()  print('x轴刻度:',plt.xticks()) # array  xticklabels_lst = ax.get_xticklabels()  print('-'*70)

x轴刻度:(array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.]), )

----------------------------------------------------------------------

如何使用matplotlib中的折线图方法plot()

print('x轴刻度标签:',list(xticklabels_lst))  #是个按序号排列的文本标签

x轴刻度标签:[Text(0.0, 0, '0'), Text(1.0, 0, '1'), Text(2.0, 0, '2'), Text(3.0, 0, '3'), Text(4.0, 0, '4'), Text(5.0, 0, '5'), Text(6.0, 0, '6'), Text(7.0, 0, '7'), Text(8.0, 0, '8'), Text(9.0, 0, '9')]

2种类型-2条线

# data  X1 = [8,3,5,'t']  X2 = [8,3,5,1]  Y = [1,2,3,4]  plt.plot(X2,Y,marker = 'o',c='r')  plt.plot(X1,Y,marker = 'o',c='g')  ax = plt.gca()  print('x轴刻度:',plt.xticks())  xticklabels_lst = ax.get_xticklabels()  print('-'*70)

x轴刻度:([0, 1, 2, 3], )

----------------------------------------------------------------------

如何使用matplotlib中的折线图方法plot()

print('x轴刻度标签:',list(xticklabels_lst))

x轴刻度标签:[Text(0, 0, '8'), Text(1, 0, '3'), Text(2, 0, '5'), Text(3, 0, 't')]

提供不同数量的位置参数

几种方式的调用

无参数

#返回一个空列表  plt.plot()

[]

如何使用matplotlib中的折线图方法plot()

plot([x], y, [fmt], *, data=None, **kwargs) plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)

1个参数

#提供一个数(点)  plt.plot(4.5,marker='o')

[]

如何使用matplotlib中的折线图方法plot()

#提供一个数字序列  plt.plot([4.5,2,3],marker='o')

[]

如何使用matplotlib中的折线图方法plot()

2个参数

自动解析位置参数的原则

(x,y)形式

# x/y 为序列  plt.plot([2,1,3],[0.5,2,2.5],marker='o')

[]

如何使用matplotlib中的折线图方法plot()

# x/y 为标量  plt.plot(2,['z'],marker = 'o')

[]

如何使用matplotlib中的折线图方法plot()

(y,fmt)形式

# plt.plot(2,'z',marker = 'o') #Unrecognized character z in format string
# y 为标量   plt.plot(2,'r',marker = 'o')

[]

如何使用matplotlib中的折线图方法plot()

# y 为序列  plt.plot([2,1,3],'r--*')

[]

如何使用matplotlib中的折线图方法plot()

3个参数

([x],y,[fmt])形式

plt.plot([2,1,3],[0.5,2,2.5],'p--g',  #          marker='o'           markersize = 15          )

[]

如何使用matplotlib中的折线图方法plot()

# fmt不写,或者‘’,则使用默认样式  plt.plot([2,1,3],[0.5,2,2.5],'',  #          marker='o'           markersize = 15          )

[]

如何使用matplotlib中的折线图方法plot()

绘图Line2D

仅画线:绘图的默认情况

默认样式:蓝色的【线】【无标记】

# marker = None 表示不做设置  plt.plot([2,2.5,1])

[]

如何使用matplotlib中的折线图方法plot()

仅画标记

plt.plot([2,2.5,1],'o')

[]

如何使用matplotlib中的折线图方法plot()

画线+标记

plt.plot([2,2.5,1],'o-')

[]

如何使用matplotlib中的折线图方法plot()

plt.plot([2,1,3],'bo--')

[]

如何使用matplotlib中的折线图方法plot()

fmt的组合顺序随意的?

6图合一及结论

# 6种组合  # [color][marker][line],3种任意组合为6种可能  # b :蓝色  # o: 圆圈标记  # --:虚线  fmt = ['bo--','b--o','ob--','o--b','--bo','--ob']  for i in range(len(fmt)):      plt.subplot(2,3,i+1)      plt.plot([2,1,3],fmt[i])   # 结论:[color][marker][line],每个都是可选的,每个属性可以选择写或者不写  # 而且与组合中它们所在的位置顺序无关

如何使用matplotlib中的折线图方法plot()

fmt支持的【线】-line

Line Styles

==== character description ====

'-' solid line style '--' dashed line style '-.' dash-dot line style ':' dotted line style

fmt支持的【标记】-marker

Markers

==== character description ====

'.' point marker ',' pixel marker \\\'o\\\' circle marker 'v' triangle_down marker '^' triangle_up marker '<' triangle_left marker '>' triangle_right marker '1' tri_down marker '2' tri_up marker '3' tri_left marker '4' tri_right marker 's\\\' square marker 'p' pentagon marker '*' star marker 'h' hexagon1 marker 'H' hexagon2 marker '+' plus marker 'x' x marker 'D' diamond marker 'd' thin_diamond marker '|' vline marker '_' hline marker

fmt支持的【颜色】-color

Colors

The supported color abbreviations are the single letter codes

==== character color ====

'b' blue 'g' green 'r' red 'c' cyan 'm' magenta 'y' yellow 'k' black 'w' white

所有样式:标记、线、颜色参考大全

链接:https://www.kesci.com/home/project/5ea4e5da105d91002d506ac6

样式属性

线条的属性

# 包含:(颜色除外)  # 线的样式、线的宽度  # linestyle or ls: {'-', '--', '-.', ':', '', }  # linewidth or lw: float  ls_lst = ['-', '--', '-.', ':',]   lw_lst = [1,3,5,7]  for i in range(len(ls_lst)):      plt.plot([1,2,3,4],[i+1]*4,ls_lst[i],lw = lw_lst[i])

如何使用matplotlib中的折线图方法plot()

标记的属性

# 包含:  '''  marker: marker style  #边框(颜色及边框粗细)  markeredgecolor or mec: color  markeredgewidth or mew: float  #面颜色  markerfacecolor or mfc: color  markerfacecoloralt or mfcalt: color  #备用标记颜色  #标记的大小  markersize or ms: float  markevery: None or int or (int, int) or slice or List[int] or float or (float, float)  '''  # linestyle = None 表示不做设置,以默认值方式  # linestyle = ''  linestyle = 'none' 表示无格式,无线条  plt.plot([4,2,1,3],linestyle = 'none',            marker = 'o',           markersize = 30,           # edge           markeredgecolor = 'r',           markeredgewidth = 5,           # face            markerfacecolor = 'g',  #          markerfacecolor = 'none',  #          markerfacecolor = None,          )

[]

如何使用matplotlib中的折线图方法plot()

综合:带有空心圆标记的线条图

'''  标记点是覆盖在线条的上面,位于上层  图层层次:[top]  spines > marker > line > backgroud  [bottom]  spines:轴的4个边框  spines 将线条图围在里面  '''  plt.plot([1,5,3,4],            marker = 'o',           markersize = 20,           # edge           markeredgecolor = 'r',           markeredgewidth = 5,           # face            markerfacecolor = 'w',    # 白色,与背景色相同,把线条覆盖着,营造空心的视觉效果  #          markerfacecolor = 'none', # 无色,透明,会看到线条  #          markerfacecolor = None, # 不设置,默认颜色          )  # markerfacecolor = ' ', # 无法识别  # markerfacecolor = '', # 无法识别

[]

如何使用matplotlib中的折线图方法plot()

data关键字的使用

字典数据

#字典数据  d = {'name':list('abcd'),'age':[22,20,18,27]}  plt.plot('name','age',ddata = d)

[]

如何使用matplotlib中的折线图方法plot()

DataFrame数据

#DataFrame数据  d = {'name':list('abcd'),'age':[22,20,18,27]}  df = pd.DataFrame(d) df
 nameage
0a22
1b20
2c18
3d27
plt.plot('name','age',data = df)

[]

如何使用matplotlib中的折线图方法plot()

“如何使用matplotlib中的折线图方法plot()”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联网站,小编将为大家输出更多高质量的实用文章!


当前标题:如何使用matplotlib中的折线图方法plot()
网页网址:
http://bjjierui.cn/article/igogdc.html

其他资讯