网创优客建站品牌官网
为成都网站建设公司企业提供高品质网站建设
热线:028-86922220
成都专业网站建设公司

定制建站费用3500元

符合中小企业对网站设计、功能常规化式的企业展示型网站建设

成都品牌网站建设

品牌网站建设费用6000元

本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...

成都商城网站建设

商城网站建设费用8000元

商城网站建设因基本功能的需求不同费用上面也有很大的差别...

成都微信网站建设

手机微信网站建站3000元

手机微信网站开发、微信官网、微信商城网站...

建站知识

当前位置:首页 > 建站知识

java如何使用elasticsearch分组进行聚合查询

这篇文章主要介绍java如何使用elasticsearch分组进行聚合查询,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!

成都创新互联公司是一家以重庆网站建设公司、网页设计、品牌设计、软件运维、营销推广、小程序App开发等移动开发为一体互联网公司。已累计为成都墙体彩绘等众行业中小客户提供优质的互联网建站和软件开发服务。

java连接elasticsearch 进行聚合查询进行相应操作

一:对单个字段进行分组求和

1、表结构图片:

根据任务id分组,分别统计出每个任务id下有多少个文字标题

1.SQL:select id, count(*) as sum from task group by taskid;

java ES连接工具类

public class ESClientConnectionUtil {  public static TransportClient client=null;  public final static String HOST = "192.168.200.211"; //服务器部署  public final static Integer PORT = 9301; //端口  public static TransportClient getESClient(){    System.setProperty("es.set.netty.runtime.available.processors", "false");    if (client == null) {      synchronized (ESClientConnectionUtil.class) {        try {          //设置集群名称          Settings settings = Settings.builder().put("cluster.name", "es5").put("client.transport.sniff", true).build();          //创建client          client = new PreBuiltTransportClient(settings).addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName(HOST), PORT));        } catch (Exception ex) {          ex.printStackTrace();          System.out.println(ex.getMessage());        }      }    }    return client;  }  public static TransportClient getESClientConnection(){    if (client == null) {      System.setProperty("es.set.netty.runtime.available.processors", "false");        try {          //设置集群名称          Settings settings = Settings.builder().put("cluster.name", "es5").put("client.transport.sniff", true).build();          //创建client          client = new PreBuiltTransportClient(settings).addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName(HOST), PORT));        } catch (Exception ex) {          ex.printStackTrace();          System.out.println(ex.getMessage());      }    }    return client;  }  //判断索引是否存在  public static boolean judgeIndex(String index){    client= getESClientConnection();     IndicesAdminClient adminClient;    //查询索引是否存在    adminClient= client.admin().indices();    IndicesExistsRequest request = new IndicesExistsRequest(index);    IndicesExistsResponse responses = adminClient.exists(request).actionGet();    if (responses.isExists()) {      return true;    }    return false;  }}

java ES语句(根据单列进行分组求和)

//根据 任务id分组进行求和 SearchRequestBuilder sbuilder = client.prepareSearch("hottopic").setTypes("hot");//根据taskid进行分组统计,统计出的列别名叫sum TermsAggregationBuilder termsBuilder = AggregationBuilders.terms("sum").field("taskid"); sbuilder.addAggregation(termsBuilder); SearchResponse responses= sbuilder.execute().actionGet();//得到这个分组的数据集合 Terms terms = responses.getAggregations().get("sum"); List lists = new ArrayList<>();for(int i=0;i

根据多列进行分组求和

//根据 任务id分组进行求和 SearchRequestBuilder sbuilder = client.prepareSearch("hottopic").setTypes("hot");//根据taskid进行分组统计,统计出的列别名叫sum TermsAggregationBuilder termsBuilder = AggregationBuilders.terms("sum").field("taskid");//根据第二个字段进行分组 TermsAggregationBuilder aAggregationBuilder2 = AggregationBuilders.terms("region_count").field("birthplace");//如果存在第三个,以此类推; sbuilder.addAggregation(termsBuilder.subAggregation(aAggregationBuilder2)); SearchResponse responses= sbuilder.execute().actionGet();//得到这个分组的数据集合 Terms terms = responses.getAggregations().get("sum"); List lists = new ArrayList<>();for(int i=0;i

对多个field求max/min/sum/avg

SearchRequestBuilder requestBuilder = client.prepareSearch("hottopic").setTypes("hot");//根据taskid进行分组统计,统计别名为sum    TermsAggregationBuilder aggregationBuilder1 = AggregationBuilders.terms("sum").field("taskid")//根据tasktatileid进行升序排列        .order(Order.aggregation("tasktatileid", true));// 求tasktitleid 进行求平均数 别名为avg_title    AggregationBuilder aggregationBuilder2 = AggregationBuilders.avg("avg_title").field("tasktitleid");//    AggregationBuilder aggregationBuilder3 = AggregationBuilders.sum("sum_taskid").field("taskid");    requestBuilder.addAggregation(aggregationBuilder1.subAggregation(aggregationBuilder2).subAggregation(aggregationBuilder3));    SearchResponse response = requestBuilder.execute().actionGet();    Terms aggregation = response.getAggregations().get("sum");    Avg terms2 = null;    Sum term3 = null;    for (Terms.Bucket bucket : aggregation.getBuckets()) {      terms2 = bucket.getAggregations().get("avg_title"); // org.elasticsearch.search.aggregations.metrics.avg.InternalAvg      term3 = bucket.getAggregations().get("sum_taskid"); // org.elasticsearch.search.aggregations.metrics.sum.InternalSum      System.out.println("编号=" + bucket.getKey() + ";平均=" + terms2.getValue() + ";总=" + term3.getValue());    }

以上是“java如何使用elasticsearch分组进行聚合查询”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注创新互联行业资讯频道!


当前文章:java如何使用elasticsearch分组进行聚合查询
分享路径:http://bjjierui.cn/article/ijhjgh.html

其他资讯