符合中小企业对网站设计、功能常规化式的企业展示型网站建设
本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...
商城网站建设因基本功能的需求不同费用上面也有很大的差别...
手机微信网站开发、微信官网、微信商城网站...
这篇文章给大家介绍redis中key过期如何解决,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。
我们提供的服务有:网站制作、成都网站设计、微信公众号开发、网站优化、网站认证、勃利ssl等。为成百上千家企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的勃利网站制作公司
初步调查
受影响的团队和缓存团队开始进行初步的调查。我们发现延迟增加与现在正在发生的key清除有关。当Redis收到写入请求但没有内存来保存写入时,它将停止正在执行的操作,清除key然后保存新key。但是,我们仍然需要找出导致这些新清除的内存使用量增加的原因。
我们怀疑内存中充满了过期但尚未删除的key。有人建议使用扫描,扫描的方法会读取所有的key,并且让过期的key被删除。
在Redis中,key有两种过期方式,主动过期和被动过期。扫描将触发key的被动过期,当读取key时, TTL将会被检查,如果TTL已过期,TTL会被删除并且不返回任何内容。Redis文档中描述了版本3.2中的key的主动过期。key的主动过期以一个名为activeExpireCycle的函数开始。它以每秒运行几次的频率,运行在一个称为cron的内部计时器上。activeExpireCycle函数的作用是遍历每个密钥空间,检查具有TTL集的随机kry,如果满足过期kry的百分比阈值,则重复此过程直到满足时间限制。
这种扫描所有kry的方法是有效的,当扫描完成时,内存使用量也下降了。似乎Redis不再有效地使key过期了。但是,当时的解决方案是增加集群的大小和更多的硬件,这样key就会分布得更多,就会有更多的可用内存。这是令人失望的,因为前面提到的升级Redis的项目通过提高集群的效率降低了运行这些集群的规模和成本。
Redis版本:有什么改变?
Redis版本2.4和3.2之间,activeExpireCycle的实现发生了变化。在Redis 2.4中,每次运行时都会检查每个数据库,在Redis3.2中,可以检查的数据库数量达到了最大值。版本3.2还引入了检查数据库的快速选项。“Slow”在计时器上运行,“fast” 运行在检查事件循环上的事件之前。快速到期周期将在某些条件下提前返回,并且它还具有较低的超时和退出功能阈值。时间限制也会被更频繁地检查。总共有100行代码被添加到此函数中。
进一步调查
最近我们有时间回过头来重新审视这个内存使用问题。我们想探索为什么会出现regression,然后看看我们如何才能更好地实现key expiration。我们的第一个想法是,在Redis中有很多的key,只采样20是远远不够的。我们想研究的另一件事是Redi 3.2中引入数据库限制的影响。
缩放和处理shard的方式使得在Twitter上运行Redis是独一无二的。我们有包含数百万个key的key空间。这对于Redis用户来说并不常见。shard由key空间表示,因此Redis的每个实例都可以有多个shard。我们Redis的实例有很多key空间。Sharding与Twitter的规模相结合,创建了具有大量key和数据库的密集后端。
过期测试的改进
每个循环上采样的数字由变量
ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP
该测试有一个控件和三个测试实例,可以对更多key进行采样。500和200是任意的。值300是基于统计样本大小的计算器的输出,其中总key数是总体大小。在上面的图表中,即使只看测试实例的初始数量,也可以清楚地看出它们的性能更好。这个与运行扫描的百分比的差异表明,过期key的开销约为25%。
虽然对更多key进行采样有助于我们找到更多过期key,但负延迟效应超出了我们的承受能力。
上图显示了99.9%的延迟(以毫秒为单位)。这表明延迟与采样的key的增加相关。橙色代表值500,绿色代表300,蓝色代表200,控制为黄色。这些线条与上表中的颜色相匹配。
在看到延迟受到样本大小影响后,我想知道是否可以根据有多少key过期来自动调整样本大小。当有更多的key过期时,延迟会受到影响,但是当没有更多的工作要做时,我们会扫描更少的key并更快地执行。
这个想法基本上是可行的,我们可以看到内存使用更低,延迟没有受到影响,一个度量跟踪样本量显示它随着时间的推移在增加和减少。但是,我们没有采用这种解决方案。这种解决方案引入了一些在我们的控件实例中没有出现的延迟峰值。代码也有点复杂,难以解释,也不直观。我们还必须针对每个不理想的群集进行调整,因为我们希望避免增加操作复杂性。
调查版本之间的拟合
我们还想调查Redis版本之间的变化。Redis新版本引入了一个名为CRON_DBS_PER_CALL的变量。这个变量设置了每次运行此cron时要检查的最大数据库数量。为了测试这种变量的影响,我们简单地注释掉了这些行。
//if (dbs_per_call > server.dbnum || timelimit_exit)
dbs_per_call = server.dbnum;
这会比较每次运行时具有限制的,和没有限制的检查所有数据库两个方法之间的效果。我们的基准测试结果十分令人兴奋。但是,我们的测试实例只有一个数据库,从逻辑上讲,这行代码在修改版本和未修改版本之间没有什么区别。变量始终都会被设置。
99.9%的以微秒为单位。未修改的Redis在上面,修改的Redis在下面。
我们开始研究为什么注释掉这一行会产生如此巨大的差异。由于这是一个if语句,我们首先怀疑的是分支预测。我们利用
gcc’s__builtin_expect
接下来,我们查看生成的程序集,以了解究竟发生了什么。
我们将if语句编译成三个重要指令mov、cmp和jg。Mov将加载一些内存到寄存器中,cmp将比较两个寄存器并根据结果设置另一个寄存器,jg将根据另一个寄存器的值执行条件跳转。跳转到的代码将是if块或else块中的代码。我取出if语句并将编译后的程序集放入Redis中。然后我通过注释不同的行来测试每条指令的效果。我测试了mov指令,看看是否存在加载内存或cpu缓存方面的性能问题,但没有发现区别。我测试了cmp指令也没有发现区别。当我使用包含的jg指令运行测试时,延迟会回升到未修改的级别。在找到这个之后,我测试了它是否只是一个跳转,或者是一个特定的jg指令。我添加了非条件跳转指令jmp,跳转然后跳回到代码运行,期间没有出现性能损失。
我们花了一些时间查看不同的性能指标,并尝试了cpu手册中列出的一些自定义指标。关于为什么一条指令会导致这样的性能问题,我们没有任何结论。当执行跳转时,我们有一些与指令缓存缓冲区和cpu行为相关的想法,但是时间不够了,可能的话,我们会在将来再回到这一点。
解析度
既然我们已经很好地理解了问题的原因,那么我们需要选择一个解决这个问题的方法。我们的决定是进行简单的修改,以便能够在启动选项中配置稳定的样本量。这样,我们就能够在延迟和内存使用之间找到一个很好的平衡点。即使删除if语句引起了如此大幅度的改进,如果我们不能解释清楚其原因,我们也很难做出改变。
关于Redis中key过期如何解决就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。