符合中小企业对网站设计、功能常规化式的企业展示型网站建设
本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...
商城网站建设因基本功能的需求不同费用上面也有很大的差别...
手机微信网站开发、微信官网、微信商城网站...
索引对象Index
示例代码:
成都创新互联一直通过网站建设和网站营销帮助企业获得更多客户资源。 以"深度挖掘,量身打造,注重实效"的一站式服务,以成都网站制作、做网站、移动互联产品、成都营销网站建设服务为核心业务。十余年网站制作的经验,使用新网站建设技术,全新开发出的标准网站,不但价格便宜而且实用、灵活,特别适合中小公司网站制作。网站管理系统简单易用,维护方便,您可以完全操作网站资料,是中小公司快速网站建设的选择。
print(type(ser_obj.index))
print(type(df_obj2.index))
print(df_obj2.index)
运行结果:
Int64Index([0, 1, 2, 3], dtype='int64')
示例代码:
# 索引对象不可变
df_obj2.index[0] = 2
运行结果:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
in ()
1 # 索引对象不可变
----> 2 df_obj2.index[0] = 2
/Users/Power/anaconda/lib/python3.6/site-packages/pandas/indexes/base.py in __setitem__(self, key, value)
1402
1403 def __setitem__(self, key, value):
-> 1404 raise TypeError("Index does not support mutable operations")
1405
1406 def __getitem__(self, key):
TypeError: Index does not support mutable operations
Series索引
示例代码:
ser_obj = pd.Series(range(5), index = ['a', 'b', 'c', 'd', 'e'])
print(ser_obj.head())
运行结果:
a 0
b 1
c 2
d 3
e 4
dtype: int64
ser_obj['label'], ser_obj[pos]
示例代码:
print(ser_obj['b'])
print(ser_obj[2])
运行结果:
1
2
ser_obj[2:4], ser_obj['label1':'label3']
注意, 按索引名切片操作时,时包含终止索引的
示例代码:
print(ser_obj[1:3])
print(ser_obj['b':'d'])
运行结果:
b 1
c 2
dtype: int64
b 1
c 2
d 3
dtype: int64
ser_obj[['label1', 'label2', 'label3']]
示例代码:
print(ser_obj[[0, 2, 4]])
print(ser_obj[['a', 'e']])
运行结果:
a 0
c 2
e 4
dtype: int64
a 0
e 4
dtype: int64
示例代码:
ser_bool = ser_obj > 2
print(ser_bool)
print(ser_obj[ser_bool])
print(ser_obj[ser_obj > 2])
运行结果:
a False
b False
c False
d True
e True
dtype: bool
d 3
e 4
dtype: int64
d 3
e 4
dtype: int64
示例代码:
import numpy as np
df_obj = pd.DataFrame(np.random.randn(5, 4), columns = ['a', 'b', 'c', 'd'])
print(df_obj.head())
运行结果:
a b c d
0 -0.241678 0.621589 0.843546 -0.383105
1 -0.526918 -0.485325 1.124420 -0.653144
2 -1.074163 0.939324 -0.309822 -0.209149
3 -0.716816 1.844654 -2.123637 -1.323484
4 0.368212 -0.910324 0.064703 0.486016
Colum index (df.columns)
Row index(df.index) a b c d
0 -0.241678 0.621589 0.843546 -0.383105
1 -0.526918 -0.485325 1.124420 -0.653144
2 -1.074163 0.939324 -0.309822 -0.209149
3 -0.716816 1.844654 -2.123637 -1.323484
4 0.368212 -0.910324 0.064703 0.486016
df_obj[['label']]
示例代码:
print(df_obj['a']) # 返回Series类型
print(df_obj[[0]])# 返回DataFrame类型,ipython3中不支持
print(type(df_obj[[0]])) # 返回DataFrame类型,ipython3中不支持
运行结果:
0 -0.241678
1 -0.526918
2 -1.074163
3 -0.716816
4 0.368212
Name: a, dtype: float64
df_obj[['label1', 'label2']]
示例代码:
print(df_obj[['a', 'c']])
print(df_obj[[1, 3]]) # ipython3中不支持
运行结果:
a c
0 -0.241678 0.843546
1 -0.526918 1.124420
2 -1.074163 -0.309822
3 -0.716816 -2.123637
4 0.368212 0.064703
b d
0 0.621589 -0.383105
1 -0.485325 -0.653144
2 0.939324 -0.209149
3 1.844654 -1.323484
4 -0.910324 0.486016
高级索引:标签、位置和混合
Pandas的高级索引有3种
DataFrame不能直接切片,可以通过loc来做切片
loc是基于标签名的索引,也就是我们自定义的索引名
示例代码:
# 标签索引 loc
# Series
print(ser_obj['b':'d'])
print(ser_obj.loc['b':'d'])
# DataFrame
print(df_obj['a'])
# 第一个参数索引行,第二个参数是列
print(df_obj.loc[0:2, 'a'])
运行结果:
b 1
c 2
d 3
dtype: int64
b 1
c 2
d 3
dtype: int64
0 -0.241678
1 -0.526918
2 -1.074163
3 -0.716816
4 0.368212
Name: a, dtype: float64
0 -0.241678
1 -0.526918
2 -1.074163
Name: a, dtype: float64
作用和loc一样,不过是基于索引编号来索引
示例代码:
# 整型位置索引 iloc
# Series
print(ser_obj[1:3])
print(ser_obj.iloc[1:3])
# DataFrame
print(df_obj.iloc[0:2, 0]) # 注意和df_obj.loc[0:2, 'a']的区别
运行结果:
b 1
c 2
dtype: int64
b 1
c 2
dtype: int64
0 -0.241678
1 -0.526918
Name: a, dtype: float64
ix是以上二者的综合,既可以使用索引编号,又可以使用自定义索引,要视情况不同来使用,
如果索引既有数字又有英文,那么这种方式是不建议使用的,容易导致定位的混乱。
示例代码:
# 混合索引 ix
# Series
print(ser_obj.ix[1:3])
print(ser_obj.ix['b':'c'])
#DataFrame
print(df_obj.loc[0:2, 'a'])
print(df_obj.ix[0:2, 0])
运行结果
b 1
c 2
dtype: int64
b 1
c 2
dtype: int64
0 -0.241678
1 -0.526918
2 -1.074163
Name: a, dtype: float64
DataFrame索引操作,可将其看作ndarray的索引操作
标签的切片索引是包含末尾位置的