符合中小企业对网站设计、功能常规化式的企业展示型网站建设
本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...
商城网站建设因基本功能的需求不同费用上面也有很大的差别...
手机微信网站开发、微信官网、微信商城网站...
今天小编给大家分享的是redis实现限流的三种方法,相信很多人都不太了解,为了让大家更加了解,所以给大家总结了以下内容,一起往下看吧。一定会有所收获的哦。
网站建设哪家好,找创新互联!专注于网页设计、网站建设、微信开发、微信平台小程序开发、集团企业网站建设等服务项目。为回馈新老客户创新互联还提供了金塔免费建站欢迎大家使用!
第一种:基于Redis的setnx的操作
我们在使用Redis的分布式锁的时候,大家都知道是依靠了setnx的指令,在CAS(Compare and swap)的操作的时候,同时给指定的key设置了过期实践(expire),我们在限流的主要目的就是为了在单位时间内,有且仅有N数量的请求能够访问我的代码程序。所以依靠setnx可以很轻松的做到这方面的功能。
比如我们需要在10秒内限定20个请求,那么我们在setnx的时候可以设置过期时间10,当请求的setnx数量达到20时候即达到了限流效果。代码比较简单就不做展示了。
当然这种做法的弊端是很多的,比如当统计1-10秒的时候,无法统计2-11秒之内,如果需要统计N秒内的M个请求,那么我们的Redis中需要保持N个key等等问题
第二种:基于Redis的数据结构zset
其实限流涉及的最主要的就是滑动窗口,上面也提到1-10怎么变成2-11。其实也就是起始值和末端值都各+1即可。
而我们如果用Redis的list数据结构可以轻而易举的实现该功能
我们可以将请求打造成一个zset数组,当每一次请求进来的时候,value保持唯一,可以用UUID生成,而score可以用当前时间戳表示,因为score我们可以用来计算当前时间戳之内有多少的请求数量。而zset数据结构也提供了range方法让我们可以很轻易的获取到2个时间戳内有多少请求
代码如下
public Response limitFlow(){ Long currentTime = new Date().getTime(); System.out.println(currentTime); if(redisTemplate.hasKey("limit")) { Integer count = redisTemplate.opsForZSet().rangeByScore("limit", currentTime - intervalTime, currentTime).size(); // intervalTime是限流的时间 System.out.println(count); if (count != null && count > 5) { return Response.ok("每分钟最多只能访问5次"); } } redisTemplate.opsForZSet().add("limit",UUID.randomUUID().toString(),currentTime); return Response.ok("访问成功"); }
通过上述代码可以做到滑动窗口的效果,并且能保证每N秒内至多M个请求,缺点就是zset的数据结构会越来越大。实现方式相对也是比较简单的。
第三种:基于Redis的令牌桶算法
提到限流就不得不提到令牌桶算法了。令牌桶算法又称之为水桶算法,具体可以参照度娘的解释 令牌桶算法
令牌桶算法提及到输入速率和输出速率,当输出速率大于输入速率,那么就是超出流量限制了。
也就是说我们每访问一次请求的时候,可以从Redis中获取一个令牌,如果拿到令牌了,那就说明没超出限制,而如果拿不到,则结果相反。
依靠上述的思想,我们可以结合Redis的List数据结构很轻易的做到这样的代码
依靠List的leftPop来获取令牌
// 输出令牌 public Response limitFlow2(Long id){ Object result = redisTemplate.opsForList().leftPop("limit_list"); if(result == null){ return Response.ok("当前令牌桶中无令牌"); } return Response.ok(articleDescription2); }
再依靠Java的定时任务,定时往List中rightPush令牌,当然令牌也需要唯一性,所以我这里还是用UUID进行了生成
// 10S的速率往令牌桶中添加UUID,只为保证唯一性 @Scheduled(fixedDelay = 10_000,initialDelay = 0) public void setIntervalTimeTask(){ redisTemplate.opsForList().rightPush("limit_list",UUID.randomUUID().toString()); }
综上,代码实现起始都不是很难,针对这些限流方式我们可以在AOP或者filter中加入以上代码,用来做到接口的限流,最终保护你的网站。
Redis其实还有很多其他的用处,他的作用不仅仅是缓存,分布式锁的作用。他的数据结构也不仅仅是只有String,Hash,List,Set,Zset。有兴趣的可以后续了解下他的GeoHash算法;BitMap,HLL以及布隆过滤器数据(Redis4.0之后加入,可以用Docker直接安装redislabs/rebloom)结构。
关于redis实现限流的三种方法就分享到这里了,希望以上内容可以对大家有一定的参考价值,可以学以致用。如果喜欢本篇文章,不妨把它分享出去让更多的人看到。