网创优客建站品牌官网
为成都网站建设公司企业提供高品质网站建设
热线:028-86922220
成都专业网站建设公司

定制建站费用3500元

符合中小企业对网站设计、功能常规化式的企业展示型网站建设

成都品牌网站建设

品牌网站建设费用6000元

本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...

成都商城网站建设

商城网站建设费用8000元

商城网站建设因基本功能的需求不同费用上面也有很大的差别...

成都微信网站建设

手机微信网站建站3000元

手机微信网站开发、微信官网、微信商城网站...

建站知识

当前位置:首页 > 建站知识

基于canvas如何使用贝塞尔曲线平滑拟合折线段

小编给大家分享一下基于canvas如何使用贝塞尔曲线平滑拟合折线段,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!

成都创新互联公司服务项目包括五常网站建设、五常网站制作、五常网页制作以及五常网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,五常网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到五常省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!

为什么要平滑拟合折线段

先来看下Echarts下折线图的渲染效果:

基于canvas如何使用贝塞尔曲线平滑拟合折线段 

一开始我没注意到其实这个折线段是曲线穿过去的,只认为是单纯的描点绘图,所以起初我实现的“简(丑)易(陋)”版本是这样的:

基于canvas如何使用贝塞尔曲线平滑拟合折线段

不要关注样式,重点就是实现之后才发现看起来人家Echarts的实现描点非常的圆滑,也由此引发了之后的探讨。怎么有规律的画平滑曲线?

效果图

先来看下最终模仿的实现:

因为我也不知道Echarts内部怎么实现的(逃

基于canvas如何使用贝塞尔曲线平滑拟合折线段 

基于canvas如何使用贝塞尔曲线平滑拟合折线段 

看起来已经非常圆润了,和我们最初的设想十分接近了。再看下曲线是否穿过了描点:

基于canvas如何使用贝塞尔曲线平滑拟合折线段 

好的!结果很明显现在来重新看下我们的实现方式。

实现过程

  1. 绘制折线图

  2. 贝塞尔曲线平滑拟合

模拟数据

var data = [Math.random() * 300];
        for (var i = 1; i < 50; i++) { //按照echarts
            data.push(Math.round((Math.random() - 0.5) * 20 + data[i - 1]));
        }
        option = {
            canvas:{
                id: 'canvas'
            },
            series: {
                name: '模拟数据',
                itemStyle: {
                    color: 'rgb(255, 70, 131)'
                },
                areaStyle: {
                    color: 'rgb(255, 158, 68)'
                },
                data: data
            }
        };

绘制折线图

首先初始化一个构造函数来放置需要用到的数据:

function LinearGradient(option) {
    this.canvas = document.getElementById(option.canvas.id)
    this.ctx = this.canvas.getContext('2d')
    this.width = this.canvas.width
    this.height = this.canvas.height
    this.tooltip = option.tooltip
    this.title = option.text
    this.series = option.series //存放模拟数据
}

绘制折线图:

LinearGradient.prototype.draw1 = function() { //折线参考线
    ... 
    //要考虑到canvas中的原点是左上角,
    //所以下面要做一些换算,
    //diff为x,y轴被数据最大值和最小值的取值范围所平分的等份。
    this.series.data.forEach(function(item, index) {
        var x = diffX * index,
            y = Math.floor(self.height - diffY * (item - dataMin))
        self.ctx.lineTo(x, y) //绘制各个数据点
    })
    ...
}

贝塞尔曲线平滑拟合

贝塞尔曲线的关键点在于控制点的选择,这个网站可以动态的展现控制点不同而绘制的不同的曲线。而对于控制点的计算。。作者还是选择了百度一下毕竟数学不好:)。具体算法有兴趣的同学可以深入了解下,现在直接说下计算控制点的结论。

基于canvas如何使用贝塞尔曲线平滑拟合折线段

上面的公式涉及到四个坐标点,当前点,前一个点以及后两个点,而当坐标值为下图展示的时候绘制出来的曲线如下所示:

基于canvas如何使用贝塞尔曲线平滑拟合折线段

不过会有一个问题就是起始点和最后一个点不能用这个公式,不过那篇文章也给出了边界值的处理办法:

基于canvas如何使用贝塞尔曲线平滑拟合折线段 

所以在将折线换成平滑曲线的时候,将边界值以及其他控制点计算好之后代入到贝塞尔函数中就完成了:

//核心实现
this.series.data.forEach(function(item, index) { //找到前一个点到下一个点中间的控制点
    var scale = 0.1 //分别对于ab控制点的一个正数,可以分别自行调整
    var last1X = diffX * (index - 1),
        last1Y = Math.floor(self.height - diffY * (self.series.data[index - 1] - dataMin)),
        //前一个点坐标
        last2X = diffX * (index - 2),
        last2Y = Math.floor(self.height - diffY * (self.series.data[index - 2] - dataMin)),
        //前两个点坐标
        nowX = diffX * (index),
        nowY = Math.floor(self.height - diffY * (self.series.data[index] - dataMin)),
        //当期点坐标
        nextX = diffX * (index + 1),
        nextY = Math.floor(self.height - diffY * (self.series.data[index + 1] - dataMin)),
        //下一个点坐标
        cAx = last1X + (nowX - last2X) * scale,
        cAy = last1Y + (nowY - last2Y) * scale,
        cBx = nowX - (nextX - last1X) * scale,
        cBy = nowY - (nextY - last1Y) * scale 
    if(index === 0) {
        self.ctx.lineTo(nowX, nowY)
        return
    } else if(index ===1) {
        cAx = last1X + (nowX - 0) * scale
        cAy = last1Y + (nowY - self.height) * scale 
    } else if(index === self.series.data.length - 1) {
        cBx = nowX - (nowX - last1X) * scale
        cBy = nowY - (nowY - last1Y) * scale
    } 
        self.ctx.bezierCurveTo(cAx, cAy, cBx, cBy, nowX, nowY);
        //绘制出上一个点到当前点的贝塞尔曲线
    })

由于我每次遍历的点都是当前点,但是文章中给出的公式是计算会知道下一个点的控制点算法,故在代码实现中我将所有点的计算挪前了一位。当index = 0时也就是初始点是不需要曲线绘制的,因为我们绘制的是从前一个点到当前点的曲线,没有到0的曲线需要绘制。从index = 1开始我们就可以正常开始绘制,从0到1的曲线,由于index = 1时是没有在他前面第二个点的故其属于边界值点,也就是需要特殊进行计算,以及最后一个点。其余均按照正常公式算出AB的xy坐标代入贝塞尔函数即可。

看完了这篇文章,相信你对“基于canvas如何使用贝塞尔曲线平滑拟合折线段”有了一定的了解,如果想了解更多相关知识,欢迎关注创新互联行业资讯频道,感谢各位的阅读!


文章标题:基于canvas如何使用贝塞尔曲线平滑拟合折线段
文章URL:http://bjjierui.cn/article/jiiijo.html

其他资讯