网创优客建站品牌官网
为成都网站建设公司企业提供高品质网站建设
热线:028-86922220
成都专业网站建设公司

定制建站费用3500元

符合中小企业对网站设计、功能常规化式的企业展示型网站建设

成都品牌网站建设

品牌网站建设费用6000元

本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...

成都商城网站建设

商城网站建设费用8000元

商城网站建设因基本功能的需求不同费用上面也有很大的差别...

成都微信网站建设

手机微信网站建站3000元

手机微信网站开发、微信官网、微信商城网站...

建站知识

当前位置:首页 > 建站知识

如何基于TensorFlow实现CNN-RNN中文文本分类

如何基于TensorFlow实现CNN-RNN中文文本分类,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。

网站建设哪家好,找创新互联建站!专注于网页设计、网站建设、微信开发、微信小程序、集团企业网站建设等服务项目。为回馈新老客户创新互联还提供了门头沟免费建站欢迎大家使用!

基于TensorFlow在中文数据集上的简化实现,使用了字符级CNN和RNN对中文文本进行分类,达到了较好的效果。

使用THUCNews的一个子集进行训练与测试,数据集请自行到THUCTC:一个高效的中文文本分类工具包

本次训练使用了其中的10个分类,每个分类6500条数据。

类别如下:

体育, 财经, 房产, 家居, 教育, 科技, 时尚, 时政, 游戏, 娱乐

数据集划分如下:

  • 训练集: 5000*10

  • 验证集: 500*10

  • 测试集: 1000*10

从原数据集生成子集的过程请参看helper下的两个脚本。其中,copy_data.sh用于从每个分类拷贝6500个文件,cnews_group.py用于将多个文件整合到一个文件中。执行该文件后,得到三个数据文件:

  • cnews.train.txt: 训练集(50000条)

  • cnews.val.txt: 验证集(5000条)

  • cnews.test.txt: 测试集(10000条)


 

预处理

data/cnews_loader.py为数据的预处理文件。

  • read_file(): 读取文件数据;

  • build_vocab(): 构建词汇表,使用字符级的表示,这一函数会将词汇表存储下来,避免每一次重复处理;

  • read_vocab(): 读取上一步存储的词汇表,转换为{词:id}表示;

  • read_category(): 将分类目录固定,转换为{类别: id}表示;

  • to_words(): 将一条由id表示的数据重新转换为文字;

  • process_file(): 将数据集从文字转换为固定长度的id序列表示;

  • batch_iter(): 为神经网络的训练准备经过shuffle的批次的数据。

经过数据预处理,数据的格式如下:

如何基于TensorFlow实现CNN-RNN中文文本分类

CNN模型

具体参看cnn_model.py的实现。

大致结构如下:

如何基于TensorFlow实现CNN-RNN中文文本分类

训练与验证

运行 python run_cnn.py train,可以开始训练。

如何基于TensorFlow实现CNN-RNN中文文本分类

在验证集上的最佳效果为94.12%,且只经过了3轮迭代就已经停止。

准确率和误差如图所示:

如何基于TensorFlow实现CNN-RNN中文文本分类

测试

运行 python run_cnn.py test 在测试集上进行测试。

如何基于TensorFlow实现CNN-RNN中文文本分类

在测试集上的准确率达到了96.04%,且各类的precision, recall和f1-score都超过了0.9。

从混淆矩阵也可以看出分类效果非常优秀。

RNN循环神经网络

配置项

RNN可配置的参数如下所示,在rnn_model.py中。

如何基于TensorFlow实现CNN-RNN中文文本分类

RNN模型

具体参看rnn_model.py的实现。

大致结构如下:

如何基于TensorFlow实现CNN-RNN中文文本分类

训练与验证

这部分的代码与 run_cnn.py极为相似,只需要将模型和部分目录稍微修改。

运行 python run_rnn.py train,可以开始训练。

若之前进行过训练,请把tensorboard/textrnn删除,避免TensorBoard多次训练结果重叠。

如何基于TensorFlow实现CNN-RNN中文文本分类

在验证集上的最佳效果为91.42%,经过了8轮迭代停止,速度相比CNN慢很多。

准确率和误差如图所示:

如何基于TensorFlow实现CNN-RNN中文文本分类

测试

运行 python run_rnn.py test 在测试集上进行测试。

如何基于TensorFlow实现CNN-RNN中文文本分类

在测试集上的准确率达到了94.22%,且各类的precision, recall和f1-score,除了家居这一类别,都超过了0.9。

从混淆矩阵可以看出分类效果非常优秀。

对比两个模型,可见RNN除了在家居分类的表现不是很理想,其他几个类别较CNN差别不大。

还可以通过进一步的调节参数,来达到更好的效果。

为方便预测,repo 中 predict.py 提供了 CNN 模型的预测方法。

看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注创新互联行业资讯频道,感谢您对创新互联的支持。


当前名称:如何基于TensorFlow实现CNN-RNN中文文本分类
文章起源:http://bjjierui.cn/article/jjpoop.html

其他资讯