网创优客建站品牌官网
为成都网站建设公司企业提供高品质网站建设
热线:028-86922220
成都专业网站建设公司

定制建站费用3500元

符合中小企业对网站设计、功能常规化式的企业展示型网站建设

成都品牌网站建设

品牌网站建设费用6000元

本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...

成都商城网站建设

商城网站建设费用8000元

商城网站建设因基本功能的需求不同费用上面也有很大的差别...

成都微信网站建设

手机微信网站建站3000元

手机微信网站开发、微信官网、微信商城网站...

建站知识

当前位置:首页 > 建站知识

Python中正则表达式是什么

这篇文章主要介绍Python中正则表达式是什么,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!

10年的九龙坡网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。营销型网站的优势是能够根据用户设备显示端的尺寸不同,自动调整九龙坡建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。创新互联建站从事“九龙坡网站设计”,“九龙坡网站推广”以来,每个客户项目都认真落实执行。

一、 正则表达式基础

1.1.概念介绍

正则表达式是用于处理字符串的强大工具,它并不是Python的一部分。

其他编程语言中也有正则表达式的概念,区别只在于不同的编程语言实现支持的语法数量不同。

它拥有自己独特的语法以及一个独立的处理引擎,在提供了正则表达式的语言里,正则表达式的语法都是一样的。

下图展示了使用正则表达式进行匹配的流程:

正则表达式的大致匹配过程是:

1.依次拿出表达式和文本中的字符比较,

2.如果每一个字符都能匹配,则匹配成功;一旦有匹配不成功的字符则匹配失败。

3.如果表达式中有量词或边界,这个过程会稍微有一些不同。

1.2. 数量词的贪婪模式与非贪婪模式

正则表达式通常用于在文本中查找匹配的字符串。

贪婪模式,总是尝试匹配尽可能多的字符;

非贪婪模式则相反,总是尝试匹配尽可能少的字符。

Python里数量词默认是贪婪的。

例如:正则表达式"ab*"如果用于查找"abbbc",将找到"abbb"。

而如果使用非贪婪的数量词"ab*?",将找到"a"。

1.3. 反斜杠的问题

与大多数编程语言相同,正则表达式里使用"\"作为转义字符,这就可能造成反斜杠困扰。

假如你需要匹配文本中的字符"\",那么使用编程语言表示的正则表达式里将需要4个反斜杠"\\\\":

第一个和第三个用于在编程语言里将第二个和第四个转义成反斜杠,

转换成两个反斜杠\\后再在正则表达式里转义成一个反斜杠用来匹配反斜杠\。

这样显然是非常麻烦的。

Python里的原生字符串很好地解决了这个问题,这个例子中的正则表达式可以使用r"\\"表示。

同样,匹配一个数字的"\\d"可以写成r"\d"。

有了原生字符串,妈妈再也不用担心我的反斜杠问题~

二、 介绍re模块

2.1. Compile

Python通过re模块提供对正则表达式的支持。

使用re的一般步骤是:

Step1:先将正则表达式的字符串形式编译为Pattern实例。

Step2:然后使用Pattern实例处理文本并获得匹配结果(一个Match实例)。

Step3:最后使用Match实例获得信息,进行其他的操作。

我们新建一个re01.py来试验一下re的应用:

代码如下:

# -*- coding: utf-8 -*- 
#一个简单的re实例,匹配字符串中的hello字符串 
#导入re模块 
import re 
# 将正则表达式编译成Pattern对象,注意hello前面的r的意思是“原生字符串” 
pattern = re.compile(r'hello') 
# 使用Pattern匹配文本,获得匹配结果,无法匹配时将返回None 
match2 = pattern.match('hello world!') 
match3 = pattern.match('helloo world!') 
match4 = pattern.match('helllo world!') 
#如果match2匹配成功 
if match2: 
# 使用Match获得分组信息 
print match2.group() 
else: 
print 'match2匹配失败!' 
#如果match3匹配成功 
if match3: 
# 使用Match获得分组信息 
print match3.group() 
else: 
print 'match3匹配失败!' 
#如果match4匹配成功 
if match4: 
# 使用Match获得分组信息 
print match4.group() 
else: 
print 'match4匹配失败!'

可以看到控制台输出了匹配的三个结果:

下面来具体看看代码中的关键方法。

★ re.compile(strPattern[, flag]):

这个方法是Pattern类的工厂方法,用于将字符串形式的正则表达式编译为Pattern对象。

第二个参数flag是匹配模式,取值可以使用按位或运算符'|'表示同时生效,比如re.I | re.M。

另外,你也可以在regex字符串中指定模式,

比如re.compile('pattern', re.I | re.M)与re.compile('(?im)pattern')是等价的。

可选值有:

re.I(全拼:IGNORECASE): 忽略大小写(括号内是完整写法,下同)

re.M(全拼:MULTILINE): 多行模式,改变'^'和'$'的行为(参见上图)

re.S(全拼:DOTALL): 点任意匹配模式,改变'.'的行为

re.L(全拼:LOCALE): 使预定字符类 \w \W \b \B \s \S 取决于当前区域设定

re.U(全拼:UNICODE): 使预定字符类 \w \W \b \B \s \S \d \D 取决于unicode定义的字符属性

re.X(全拼:VERBOSE): 详细模式。这个模式下正则表达式可以是多行,忽略空白字符,并可以加入注释。

以下两个正则表达式是等价的:

代码如下:

# -*- coding: utf-8 -*- 
#两个等价的re匹配,匹配一个小数 
import re 
a = re.compile(r"""\d + # the integral part 
\. # the decimal point 
\d * # some fractional digits""", re.X) 
b = re.compile(r"\d+\.\d*") 
match21 = a.match('3.1415') 
match22 = a.match('33') 
match31 = b.match('3.1415') 
match32 = b.match('33') 
if match21: 
# 使用Match获得分组信息 
print match21.group() 
else: 
print u'match21不是小数' 
if match22: 
# 使用Match获得分组信息 
print match22.group() 
else: 
print u'match22不是小数' 
if match31: 
# 使用Match获得分组信息 
print match31.group() 
else: 
print u'match31不是小数' 
if match32: 
# 使用Match获得分组信息 
print match32.group() 
else: 
print u'match32不是小数'

re提供了众多模块方法用于完成正则表达式的功能。

这些方法可以使用Pattern实例的相应方法替代,唯一的好处是少写一行re.compile()代码,

但同时也无法复用编译后的Pattern对象。

这些方法将在Pattern类的实例方法部分一起介绍。

如一开始的hello实例可以简写为:

代码如下:

# -*- coding: utf-8 -*- 
#一个简单的re实例,匹配字符串中的hello字符串 
import re 
m = re.match(r'hello', 'hello world!') 
print m.group()

2.2. Match

Match对象是一次匹配的结果,包含了很多关于此次匹配的信息,可以使用Match提供的可读属性或方法来获取这些信息。

属性:

string: 匹配时使用的文本。

re: 匹配时使用的Pattern对象。

pos: 文本中正则表达式开始搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。

endpos: 文本中正则表达式结束搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。

lastindex: 最后一个被捕获的分组在文本中的索引。如果没有被捕获的分组,将为None。

lastgroup: 最后一个被捕获的分组的别名。如果这个分组没有别名或者没有被捕获的分组,将为None。

方法:

group([group1, …]):

获得一个或多个分组截获的字符串;指定多个参数时将以元组形式返回。group1可以使用编号也可以使用别名;编号0代表整个匹配的子串;不填写参数时,返回group(0);没有截获字符串的组返回None;截获了多次的组返回最后一次截获的子串。

groups([default]): 

以元组形式返回全部分组截获的字符串。相当于调用group(1,2,…last)。default表示没有截获字符串的组以这个值替代,默认为None。

groupdict([default]):

返回以有别名的组的别名为键、以该组截获的子串为值的字典,没有别名的组不包含在内。default含义同上。

start([group]): 

返回指定的组截获的子串在string中的起始索引(子串第一个字符的索引)。group默认值为0。

end([group]):

返回指定的组截获的子串在string中的结束索引(子串最后一个字符的索引+1)。group默认值为0。

span([group]):

返回(start(group), end(group))。

expand(template): 

将匹配到的分组代入template中然后返回。template中可以使用\id或\g、\g引用分组,但不能使用编号0。\id与\g是等价的;但\10将被认为是第10个分组,如果你想表达\1之后是字符'0',只能使用\g<1>0。

下面来用一个py实例输出所有的内容加深理解:

代码如下:

# -*- coding: utf-8 -*- 
#一个简单的match实例 
import re 
# 匹配如下内容:单词+空格+单词+任意字符 
m = re.match(r'(\w+) (\w+)(?P.*)', 'hello world!') 
print "m.string:", m.string 
print "m.re:", m.re 
print "m.pos:", m.pos 
print "m.endpos:", m.endpos 
print "m.lastindex:", m.lastindex 
print "m.lastgroup:", m.lastgroup 
print "m.group():", m.group() 
print "m.group(1,2):", m.group(1, 2) 
print "m.groups():", m.groups() 
print "m.groupdict():", m.groupdict() 
print "m.start(2):", m.start(2) 
print "m.end(2):", m.end(2) 
print "m.span(2):", m.span(2) 
print r"m.expand(r'\g<2> \g<1>\g<3>'):", m.expand(r'\2 \1\3') 
### output ### 
# m.string: hello world! 
# m.re: <_sre.SRE_Pattern object at 0x016E1A38> 
# m.pos: 0 
# m.endpos: 12 
# m.lastindex: 3 
# m.lastgroup: sign 
# m.group(1,2): ('hello', 'world') 
# m.groups(): ('hello', 'world', '!') 
# m.groupdict(): {'sign': '!'} 
# m.start(2): 6 
# m.end(2): 11 
# m.span(2): (6, 11) 
# m.expand(r'\2 \1\3'): world hello!

2.3. Pattern

Pattern对象是一个编译好的正则表达式,通过Pattern提供的一系列方法可以对文本进行匹配查找。

Pattern不能直接实例化,必须使用re.compile()进行构造,也就是re.compile()返回的对象。

Pattern提供了几个可读属性用于获取表达式的相关信息:

pattern: 编译时用的表达式字符串。

flags: 编译时用的匹配模式。数字形式。

groups: 表达式中分组的数量。

groupindex: 以表达式中有别名的组的别名为键、以该组对应的编号为值的字典,没有别名的组不包含在内。

可以用下面这个例子查看pattern的属性:

代码如下:

# -*- coding: utf-8 -*- 
#一个简单的pattern实例 
import re 
p = re.compile(r'(\w+) (\w+)(?P.*)', re.DOTALL) 
print "p.pattern:", p.pattern 
print "p.flags:", p.flags 
print "p.groups:", p.groups 
print "p.groupindex:", p.groupindex 
### output ### 
# p.pattern: (\w+) (\w+)(?P.*) 
# p.flags: 16 
# p.groups: 3 
# p.groupindex: {'sign': 3}

以上是Python中正则表达式是什么的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注创新互联行业资讯频道!


分享文章:Python中正则表达式是什么
链接分享:http://bjjierui.cn/article/jsgjpo.html

其他资讯