网创优客建站品牌官网
为成都网站建设公司企业提供高品质网站建设
热线:028-86922220
成都专业网站建设公司

定制建站费用3500元

符合中小企业对网站设计、功能常规化式的企业展示型网站建设

成都品牌网站建设

品牌网站建设费用6000元

本套餐主要针对企业品牌型网站、中高端设计、前端互动体验...

成都商城网站建设

商城网站建设费用8000元

商城网站建设因基本功能的需求不同费用上面也有很大的差别...

成都微信网站建设

手机微信网站建站3000元

手机微信网站开发、微信官网、微信商城网站...

建站知识

当前位置:首页 > 建站知识

PostgreSQLJOINlimit优化器成本计算改进-mergejoinstartupcost优化

背景

PostgreSQL limit N的成本估算,是通过计算总成本A,以及估算得到的总记录数B得到:

成都创新互联公司主营蓬溪网站建设的网络公司,主营网站建设方案,成都app开发,蓬溪h5小程序开发搭建,蓬溪网站营销推广欢迎蓬溪等地区企业咨询

(N/B)*A  
  
大概意思就是占比的方法计算

对于单表查询,这种方法通常来说比较适用,但是如果数据分布有倾斜,实际上也并不一定适用,例如以下两种情况:

1、符合条件的数据占总记录数的50%,但是全部分布在表的末尾,那么limit 10000 条到底是走索引快还是走全表扫描快呢?

2、符合条件的数据占总记录数的50%,全部分布在表的头部,那么LIMIT 10000 条,肯定是全表扫描快了。

对于JOIN的情况,同样有类似的问题:

比如JOIN并且带条件时,LIMIT N,是走嵌套循环快,还是走MERGE 或 HASH JOIN快?

1、嵌套循环+where+LIMIT的成本计算方法,可以使用LIMIT占总估算记录数占比的方法得到,还算是比较合理。

2、MERGE JOIN+where+LIMIT的成本计算方法,必须考虑启动成本,例如WHERE条件在A表上(可以走索引直接从条件位置开始扫描),B表则需要从索引的开头开始扫描(到与A表的索引匹配时,也许需要扫描很多的索引ENTRY,这个启动成本可能会很高),启动成本,加上LIMIT条数在剩余的所有成本中的一个占比,得到的成本是一个比较合理的成本。

3、hash join+where+limit的成本计算方法,使用启动成本+LIMIT占总估算记录数占比的方法得到,优化器目前就是这么做的,比较合理。

然而,对于MERGE JOIN,目前在使用LIMIT时,PG没有加上这个启动成本,使得最后得到的执行计划可能不准确。

改进方法建议可以加入merge join启动成本。

PostgreSQL 例子

1、建表如下:

postgres=# create table test1(a int, b text, primary key(a));  
CREATE TABLE  
postgres=# create table test2(a int, b text, primary key(a));  
CREATE TABLE  
postgres=# alter table test1 add constraint testcheck foreign key(a) references test2(a);                                                                    
ALTER TABLE  
postgres=# insert into test2 select generate_series(1,1000000),'abcdefg';  
INSERT 0 1000000  
postgres=# insert into test1 select generate_series(1,1000000,2),'abcdefg';  
INSERT 0 500000  
  
analyze test1;  
analyze test2;

2、查询SQL如下:

explain (analyze,verbose,timing,costs,buffers) select * from test2 left join test1 on test2.a = test1.a where test2.a > 500000 limit 10;

该语句中表结构比较特殊,两个关联字段都是主键,并且存在外键约束关系,查询计划如下:

                                                                     QUERY PLAN                                                                       
----------------------------------------------------------------------------------------------------------------------------------------------------  
 Limit  (cost=0.73..0.89 rows=10 width=24) (actual time=54.729..54.739 rows=10 loops=1)  
   Output: test2.a, test2.b, test1.a, test1.b  
   Buffers: shared hit=2042  
   ->  Merge Left Join  (cost=0.73..7929.35 rows=498340 width=24) (actual time=54.728..54.735 rows=10 loops=1)  
         Output: test2.a, test2.b, test1.a, test1.b  
         Inner Unique: true  
         Merge Cond: (test2.a = test1.a)  
         Buffers: shared hit=2042  
         ->  Index Scan using test2_pkey on public.test2  (cost=0.37..3395.42 rows=498340 width=12) (actual time=0.017..0.020 rows=10 loops=1)  
               Output: test2.a, test2.b  
               Index Cond: (test2.a > 500000)  
               Buffers: shared hit=4  
         ->  Index Scan using test1_pkey on public.test1  (cost=0.37..2322.99 rows=500000 width=12) (actual time=0.006..34.120 rows=250006 loops=1)  
               Output: test1.a, test1.b  
               Buffers: shared hit=2038  
 Planning Time: 0.216 ms  
 Execution Time: 54.765 ms  
(17 rows)

从执行计划上可以看出,根据test2表先查询出满足条件的10条记录,然后和test1表采用mergejoin关联,由于在估算的时候没有考虑到limit的影响,估算的行数非常大,是498340行,

实际采用nestloop效果会更好(关闭掉seqscan和megejoin)

postgres=# set enable_seqscan =off;   
SET  
postgres=# set enable_mergejoin =off;   
SET  
postgres=# explain (analyze,verbose,timing,costs,buffers) select * from test2 left join test1 on test2.a = test1.a where test2.a > 500000 limit 10;  
                                                                  QUERY PLAN                                                                     
-----------------------------------------------------------------------------------------------------------------------------------------------  
 Limit  (cost=0.73..4.53 rows=10 width=24) (actual time=0.040..0.060 rows=10 loops=1)  
   Output: test2.a, test2.b, test1.a, test1.b  
   Buffers: shared hit=39  
   ->  Nested Loop Left Join  (cost=0.73..189339.64 rows=498340 width=24) (actual time=0.039..0.057 rows=10 loops=1)  
         Output: test2.a, test2.b, test1.a, test1.b  
         Inner Unique: true  
         Buffers: shared hit=39  
         ->  Index Scan using test2_pkey on public.test2  (cost=0.37..3395.42 rows=498340 width=12) (actual time=0.025..0.027 rows=10 loops=1)  
               Output: test2.a, test2.b  
               Index Cond: (test2.a > 500000)  
               Buffers: shared hit=4  
         ->  Index Scan using test1_pkey on public.test1  (cost=0.37..0.37 rows=1 width=12) (actual time=0.002..0.002 rows=0 loops=10)  
               Output: test1.a, test1.b  
               Index Cond: (test2.a = test1.a)  
               Buffers: shared hit=35  
 Planning Time: 0.112 ms  
 Execution Time: 0.078 ms  
(17 rows)

但是从评估的成本来看,merge join+limit 比 nestloop+limit更低,原因是nestloop的总成本更高(189339 比 7929)。所以优化器根据比例算法(未参照merge join的启动成本),认为在LIMIT的情况下,也是merge join成本更低。

实际情况是,MERGE JOIN的没带查询条件的B表,需要从索引的头部开始扫,而不是从指定位置开始扫。 因此实际情况是merge join是更慢的。

目前优化器使用hash join时,已经算上了startup cost,例子

postgres=# set enable_mergejoin =off;
SET
postgres=# set enable_seqscan =off;
SET
postgres=# set enable_nestloop =off;
SET
 
启动成本=3536.51
postgres=# explain (analyze,verbose,timing,costs,buffers) select * from test2 left join test1 on test2.a = test1.a where test2.a > 500000 limit 10;
                                                                        QUERY PLAN                                                                        
----------------------------------------------------------------------------------------------------------------------------------------------------------
 Limit  (cost=3536.51..3536.61 rows=10 width=24) (actual time=158.148..158.219 rows=10 loops=1)
   Output: test2.a, test2.b, test1.a, test1.b
   Buffers: shared hit=4079, temp written=1464
   ->  Hash Left Join  (cost=3536.51..8135.83 rows=494590 width=24) (actual time=158.147..158.215 rows=10 loops=1)
         Output: test2.a, test2.b, test1.a, test1.b
         Inner Unique: true
         Hash Cond: (test2.a = test1.a)
         Buffers: shared hit=4079, temp written=1464
         ->  Index Scan using test2_pkey on public.test2  (cost=0.37..3369.86 rows=494590 width=12) (actual time=0.023..0.027 rows=26 loops=1)
               Output: test2.a, test2.b
               Index Cond: (test2.a > 500000)
               Buffers: shared hit=4
         ->  Hash  (cost=2322.99..2322.99 rows=500000 width=12) (actual time=156.848..156.849 rows=500000 loops=1)
               Output: test1.a, test1.b
               Buckets: 262144  Batches: 4  Memory Usage: 7418kB
               Buffers: shared hit=4072, temp written=1464
               ->  Index Scan using test1_pkey on public.test1  (cost=0.37..2322.99 rows=500000 width=12) (actual time=0.011..72.506 rows=500000 loops=1)
                     Output: test1.a, test1.b
                     Buffers: shared hit=4072
 Planning Time: 0.141 ms
 Execution Time: 162.086 ms
(21 rows)

改进建议

针对test1表,需要估算a<500000有多少行,作为索引扫描的startup成本。

postgres=# explain select * from test1 where a<500000;  
                                   QUERY PLAN                                      
---------------------------------------------------------------------------------  
 Index Scan using test1_pkey on test1  (cost=0.37..1702.83 rows=249893 width=12)  
   Index Cond: (a < 500000)  
(2 rows)  
  
  
postgres=# explain select * from test1;  
                         QUERY PLAN                            
-------------------------------------------------------------  
 Seq Scan on test1  (cost=0.00..133.15 rows=500000 width=12)  
(1 row)

所以,索引扫描test1(where a > 500000)的merge join启动成本应该有 1702,加上这个成本后,成本远大于NEST LOOP JOIN的成本,所以不会选择merge join。

Oracle 例子

create table test1(a int, b varchar2(4000), primary key(a));  
  
create table test2(a int, b varchar2(4000), primary key(a));  
  
alter table test1 add constraint testcheck foreign key(a) references test2(a);                                                                    
  
  
insert into test2 select rownum, 'abcdefg' from dual connect by level <=1000000;  
  
  
insert into test1 select * from (select rownum as rn, 'abcdefg' from dual connect by level <=1000000) t where mod(rn,2)=1;
exec DBMS_STATS.GATHER_TABLE_STATS('DIGOAL', 'TEST1', method_opt => 'FOR COLUMNS (a, b)');   
exec DBMS_STATS.GATHER_TABLE_STATS('DIGOAL', 'TEST2', method_opt => 'FOR COLUMNS (a, b)');

查询SQL如下:

set autotrace on  
set linesize 120  
set pagesize 200  
set wrap off  
  
select * from test2 left join test1 on test2.a = test1.a where test2.a > 500000 and rownum<=10;  
  
  
         A B  
---------- -------------------------------------------------------------------------------------------------------------  
    500001 abcdefg  
    500002 abcdefg  
    500003 abcdefg  
    500004 abcdefg  
    500005 abcdefg  
    500006 abcdefg  
    500007 abcdefg  
    500008 abcdefg  
    500009 abcdefg  
    500010 abcdefg  
  
10 rows selected.  
  
  
Execution Plan  
----------------------------------------------------------  
Plan hash value: 3391785554  
  
-----------------------------------------------------------------------------------------------  
| Id  | Operation                     | Name          | Rows  | Bytes | Cost (%CPU)| Time     |  
-----------------------------------------------------------------------------------------------  
|   0 | SELECT STATEMENT              |               |    10 |   500 |    15   (0)| 00:00:01 |  
|*  1 |  COUNT STOPKEY                |               |       |       |            |          |  
|   2 |   NESTED LOOPS OUTER          |               |    10 |   500 |    15   (0)| 00:00:01 |  
|   3 |    TABLE ACCESS BY INDEX ROWID| TEST2         |    10 |   250 |     4   (0)| 00:00:01 |  
|*  4 |     INDEX RANGE SCAN          | SYS_C00151146 |  9000 |       |     3   (0)| 00:00:01 |  
|   5 |    TABLE ACCESS BY INDEX ROWID| TEST1         |     1 |    25 |     2   (0)| 00:00:01 |  
|*  6 |     INDEX UNIQUE SCAN         | SYS_C00151145 |     1 |       |     1   (0)| 00:00:01 |  
-----------------------------------------------------------------------------------------------  
  
Predicate Information (identified by operation id):  
---------------------------------------------------  
  
   1 - filter(ROWNUM<=10)  
   4 - access("TEST2"."A">500000)  
   6 - access("TEST2"."A"="TEST1"."A"(+))  
       filter("TEST1"."A"(+)>500000)  
  
  
Statistics  
----------------------------------------------------------  
          0  recursive calls  
          0  db block gets  
         25  consistent gets  
          0  physical reads  
          0  redo size  
        937  bytes sent via SQL*Net to client  
        500  bytes received via SQL*Net from client  
          2  SQL*Net roundtrips to/from client  
          0  sorts (memory)  
          0  sorts (disk)  
         10  rows processed

Oracle 选择了nestloop join。

使用HINT,让Oracle使用merge join,看看成本是多少,是否与修正PostgreSQL merge join启动成本接近。

select /*+ USE_MERGE(test2,test1) */ * from test2 left join test1 on test2.a = test1.a where test2.a > 500000 and rownum<=10;  
Execution Plan
----------------------------------------------------------
Plan hash value: 492577188
------------------------------------------------------------------------------------------------
| Id  | Operation                      | Name          | Rows  | Bytes | Cost (%CPU)| Time     |
------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT               |               |    10 |   750 |    29   (7)| 00:00:01 |
|*  1 |  COUNT STOPKEY                 |               |       |       |            |          |
|   2 |   MERGE JOIN OUTER             |               |    10 |   750 |    29   (7)| 00:00:01 |
|   3 |    TABLE ACCESS BY INDEX ROWID | TEST2         |    10 |   250 |     4   (0)| 00:00:01 |
|*  4 |     INDEX RANGE SCAN           | SYS_C00151146 |  9000 |       |     3   (0)| 00:00:01 |
|*  5 |    SORT JOIN                   |               | 25000 |   610K|    25   (8)| 00:00:01 |
|   6 |     TABLE ACCESS BY INDEX ROWID| TEST1         | 25000 |   610K|    23   (0)| 00:00:01 |
|*  7 |      INDEX RANGE SCAN          | SYS_C00151145 |  4500 |       |    11   (0)| 00:00:01 |
------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
   1 - filter(ROWNUM<=10)
   4 - access("TEST2"."A">500000)
   5 - access("TEST2"."A"="TEST1"."A"(+))
       filter("TEST2"."A"="TEST1"."A"(+))
   7 - access("TEST1"."A"(+)>500000)
Statistics
----------------------------------------------------------
          1  recursive calls
          0  db block gets
       1099  consistent gets
          0  physical reads
          0  redo size
        937  bytes sent via SQL*Net to client
        500  bytes received via SQL*Net from client
          2  SQL*Net roundtrips to/from client
          1  sorts (memory)
          0  sorts (disk)
         10  rows processed

小结

1、PostgreSQL 在计算merge join+limit的成本时,优化器有优化的空间,可以考虑把启动成本算进来,提高优化器选择带limit输出的SQL的JOIN方法的正确性。

2、如果是inner join,通过query rewrite可以对merge join进行优化,跳过不符合条件的头部INDEX SCAN。

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from test2 join test1 on test2.a = test1.a where test2.a > 500000 limit 10;
                                                                     QUERY PLAN                                                                     
----------------------------------------------------------------------------------------------------------------------------------------------------
 Limit  (cost=0.77..1.09 rows=10 width=24) (actual time=54.626..54.638 rows=10 loops=1)
   Output: test2.a, test2.b, test1.a, test1.b
   Buffers: shared hit=2042
   ->  Merge Join  (cost=0.77..7895.19 rows=247295 width=24) (actual time=54.625..54.635 rows=10 loops=1)
         Output: test2.a, test2.b, test1.a, test1.b
         Inner Unique: true
         Merge Cond: (test2.a = test1.a)
         Buffers: shared hit=2042
         ->  Index Scan using test2_pkey on public.test2  (cost=0.37..3369.86 rows=494590 width=12) (actual time=0.017..0.020 rows=19 loops=1)
               Output: test2.a, test2.b
               Index Cond: (test2.a > 500000)
               Buffers: shared hit=4
         ->  Index Scan using test1_pkey on public.test1  (cost=0.37..2322.99 rows=500000 width=12) (actual time=0.008..34.009 rows=250010 loops=1)
               Output: test1.a, test1.b
               Buffers: shared hit=2038
 Planning Time: 0.244 ms
 Execution Time: 54.669 ms
(17 rows)
  
sql rewrite:
  
可以做到内核里面,这样就不需要改SQL了。效果如下,超好。
postgres=# explain (analyze,verbose,timing,costs,buffers) select * from test2 join test1 on test2.a = test1.a where test2.a > 500000 and test1.a > 500000limit 10;
                                                                  QUERY PLAN                                                                   
-----------------------------------------------------------------------------------------------------------------------------------------------
 Limit  (cost=0.75..1.30 rows=10 width=24) (actual time=0.035..0.048 rows=10 loops=1)
   Output: test2.a, test2.b, test1.a, test1.b
   Buffers: shared hit=8
   ->  Merge Join  (cost=0.75..6711.51 rows=123700 width=24) (actual time=0.034..0.044 rows=10 loops=1)
         Output: test2.a, test2.b, test1.a, test1.b
         Inner Unique: true
         Merge Cond: (test2.a = test1.a)
         Buffers: shared hit=8
         ->  Index Scan using test2_pkey on public.test2  (cost=0.37..3369.86 rows=494590 width=12) (actual time=0.015..0.019 rows=19 loops=1)
               Output: test2.a, test2.b
               Index Cond: (test2.a > 500000)
               Buffers: shared hit=4
         ->  Index Scan using test1_pkey on public.test1  (cost=0.37..1704.30 rows=250106 width=12) (actual time=0.015..0.017 rows=10 loops=1)
               Output: test1.a, test1.b
               Index Cond: (test1.a > 500000)
               Buffers: shared hit=4
 Planning Time: 0.276 ms
 Execution Time: 0.074 ms
(18 rows)

参考

《PostgreSQL 优化器案例之 - order by limit 索引选择问题》

src/backend/optimizer/path/costsize.c

原文地址:https://github.com/digoal/blog/blob/master/201810/20181004_03.md


当前题目:PostgreSQLJOINlimit优化器成本计算改进-mergejoinstartupcost优化
网站网址:http://bjjierui.cn/article/pdeicj.html

其他资讯